Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tuberculosis (Edinb) ; 139: 102317, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736037

RESUMEN

Mycobacteroides abscessus (M. ab) infections are innately resistant to most currently available antibiotics and present a growing, poorly addressed medical need. The existing treatment regimens are lengthy and produce inadequate outcomes for many patients. Importantly, most clinically used drugs and drug candidates against M. ab are either bacteriostatic, or only weakly bactericidal. New strategies exploring a broader chemical space are urgently needed, as innovative agents in development are scarce and hit rates in large unbiased screens against the mycobacterium have been discouragingly low. Here we present a computational chemogenomics-driven approach to discovery of novel antibacterials that effectively reveals drug-like compounds active against M. ab, paired with small sets of predicted molecular targets for the compounds. Several of the bioactive hits identified exhibited rapid bactericidal, including sterilizing, activity against the mycobacterium, indicating that there are currently unexploited chemically tractable molecular mechanisms for rapid sterilization of M. ab. Interestingly, starvation, which typically induces drug tolerance, sensitized M. ab to some of the compounds, resulting in potencies similar to those of drugs in clinical use. The presented drug discovery platform has potential to identify highly differentiated prototype anti-infective molecules and thereby contribute to development of regimens for shorter treatment and improved outcomes for non-tuberculous mycobacterial infections.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Antibacterianos/farmacología , Micobacterias no Tuberculosas , Infecciones por Mycobacterium no Tuberculosas/microbiología , Pruebas de Sensibilidad Microbiana
2.
bioRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38187572

RESUMEN

Pathogenic and nonpathogenic mycobacteria secrete extracellular vesicles (EVs) under various conditions. EVs produced by Mycobacterium tuberculosis ( Mtb ) have raised significant interest for their potential in cell communication, nutrient acquisition, and immune evasion. However, the relevance of vesicle secretion during tuberculosis infection remains unknown due to the limited understanding of mycobacterial vesicle biogenesis. We have previously shown that a transposon mutant in the LCP-related gene virR ( virR mut ) manifested a strong attenuated phenotype during experimental macrophage and murine infections, concomitant to enhanced vesicle release. In this study, we aimed to understand the role of VirR in the vesicle production process in Mtb . We employ genetic, transcriptional, proteomics, ultrastructural and biochemical methods to investigate the underlying processes explaining the enhanced vesiculogenesis phenomenon observed in the virR mutant. Our results establish that VirR is critical to sustain proper cell permeability via regulation of cell envelope remodeling possibly through the interaction with similar cell envelope proteins, which control the link between peptidoglycan and arabinogalactan. These findings advance our understanding of mycobacterial extracellular vesicle biogenesis and suggest that these set of proteins could be attractive targets for therapeutic intervention.

3.
Front Med (Lausanne) ; 9: 965359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072954

RESUMEN

Tuberculosis (TB) is a global disease caused by Mycobacterium tuberculosis (Mtb) and is manifested as a continuum spectrum of infectious states. Both, the most common and clinically asymptomatic latent tuberculosis infection (LTBI), and the symptomatic disease, active tuberculosis (TB), are at opposite ends of the spectrum. Such binary classification is insufficient to describe the existing clinical heterogeneity, which includes incipient and subclinical TB. The absence of clinically TB-related symptoms and the extremely low bacterial burden are features shared by LTBI, incipient and subclinical TB states. In addition, diagnosis relies on cytokine release after antigenic T cell stimulation, yet several studies have shown that a high proportion of individuals with immunoreactivity never developed disease, suggesting that they were no longer infected. LTBI is estimated to affect to approximately one fourth of the human population and, according to WHO data, reactivation of LTBI is the main responsible of TB cases in developed countries. Assuming the drawbacks associated to the current diagnostic tests at this part of the disease spectrum, properly assessing individuals at real risk of developing TB is a major need. Further, it would help to efficiently design preventive treatment. This quest would be achievable if information about bacterial viability during human silent Mtb infection could be determined. Here, we have evaluated the feasibility of new approaches to detect viable bacilli across the full spectrum of TB disease. We focused on methods that specifically can measure host-independent parameters relying on the viability of Mtb either by its direct or indirect detection.

4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193958

RESUMEN

Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.


Asunto(s)
Mycobacterium tuberculosis/genética , Sistemas de Secreción Tipo VII/genética , Animales , Sistemas de Secreción Bacterianos/genética , Evolución Biológica , Evolución Molecular , Amplificación de Genes/genética , Ratones , Mycobacterium tuberculosis/metabolismo , Sistemas de Secreción Tipo VII/fisiología , Virulencia , Factores de Virulencia/genética
5.
Elife ; 92020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33107429

RESUMEN

This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as 'intercellular mosaic methylation' (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.


Asunto(s)
Adenina/metabolismo , Metilación de ADN , Epigenoma , Variación Genética , Mycobacterium tuberculosis/genética , Mutación , Mycobacterium tuberculosis/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-32631825

RESUMEN

Large genomic deletions (LGDs) (6 to 63 kbp) were observed in isoniazid-resistant Mycobacterium tuberculosis mutants derived from four M. tuberculosis strains. These LGDs had no growth defect in vitro but could be defective in intracellular growth and showed various sensitivities toward oxidative stress despite lacking katG The LGD regions comprise 74 genes, mostly of unknown function, that may be important for M. tuberculosis intracellular growth and protection against oxidative stress.


Asunto(s)
Isoniazida , Mycobacterium tuberculosis , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Catalasa/genética , Farmacorresistencia Bacteriana/genética , Isoniazida/farmacología , Mutación , Mycobacterium tuberculosis/genética
7.
Nat Immunol ; 21(1): 86-100, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844327

RESUMEN

By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.


Asunto(s)
Infecciones por Enterobacteriaceae/inmunología , Variación Genética/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Inmunofenotipificación/métodos , Infecciones por Salmonella/inmunología , Animales , Citrobacter/inmunología , Infecciones por Enterobacteriaceae/microbiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Salmonella/inmunología , Infecciones por Salmonella/microbiología
8.
J Clin Microbiol ; 58(1)2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645373

RESUMEN

Molecular epidemiology studies of tuberculosis have been empowered in recent years by the availability of whole-genome sequencing, which has allowed a new focus on the adaptive significance of drug resistance mutations. Genome sequencing technology remains expensive, however, limiting the potential for larger studies. Conversely, during this same time the GeneXpert molecular diagnostic method has been deployed globally and now serves as a cornerstone of tuberculosis diagnosis and drug sensitivity testing. In this issue, Y. Cao, H. Parmar, A. M. Simmons, D. Kale, et al. (J Clin Microbiol 57:e00907-19, 2019, https://doi.org/10.1128/JCM.00907-19) report the development of an algorithm that can use high-resolution melting temperature data generated in the course of analysis using the next-generation Xpert MTB/RIF Ultra assay to accurately genotype rifampin resistance-associated mutations. When paired with a system to aggregate data from diagnostic laboratories, this technique has the potential to enable studies on the global scale of the epidemiology of tuberculosis drug resistance.


Asunto(s)
Antibióticos Antituberculosos , Mycobacterium tuberculosis/genética , Tuberculosis , Farmacorresistencia Bacteriana/efectos de los fármacos , Genotipo , Humanos , Epidemiología Molecular , Mutación , Rifampin , Sensibilidad y Especificidad , Temperatura
9.
Proc Natl Acad Sci U S A ; 115(39): 9779-9784, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30143580

RESUMEN

Reactive oxygen species (ROS)-mediated oxidative stress and DNA damage have recently been recognized as contributing to the efficacy of most bactericidal antibiotics, irrespective of their primary macromolecular targets. Inhibitors of targets involved in both combating oxidative stress as well as being required for in vivo survival may exhibit powerful synergistic action. This study demonstrates that the de novo arginine biosynthetic pathway in Mycobacterium tuberculosis (Mtb) is up-regulated in the early response to the oxidative stress-elevating agent isoniazid or vitamin C. Arginine deprivation rapidly sterilizes the Mtb de novo arginine biosynthesis pathway mutants ΔargB and ΔargF without the emergence of suppressor mutants in vitro as well as in vivo. Transcriptomic and flow cytometry studies of arginine-deprived Mtb have indicated accumulation of ROS and extensive DNA damage. Metabolomics studies following arginine deprivation have revealed that these cells experienced depletion of antioxidant thiols and accumulation of the upstream metabolite substrate of ArgB or ArgF enzymes. ΔargB and ΔargF were unable to scavenge host arginine and were quickly cleared from both immunocompetent and immunocompromised mice. In summary, our investigation revealed in vivo essentiality of the de novo arginine biosynthesis pathway for Mtb and a promising drug target space for combating tuberculosis.


Asunto(s)
Arginina/deficiencia , Mycobacterium tuberculosis/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Antituberculosos/farmacología , Arginina/metabolismo , Daño del ADN , Farmacorresistencia Bacteriana , Citometría de Flujo , Perfilación de la Expresión Génica , Técnicas In Vitro , Redes y Vías Metabólicas , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
10.
JCI Insight ; 3(13)2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29997295

RESUMEN

Tenofovir gel and dapivirine ring provided variable HIV protection in clinical trials, reflecting poor adherence and possibly biological factors. We hypothesized that vaginal microbiota modulates pharmacokinetics and tested the effects of pH, individual bacteria, and vaginal swabs from women on pharmacokinetics and antiviral activity. Tenofovir, but not dapivirine, uptake by human cells was reduced as pH increased. Lactobacillus crispatus actively transported tenofovir leading to a loss in drug bioavailability and culture supernatants from Gardnerella vaginalis, but not Atopobium vaginae, blocked tenofovir endocytosis. The inhibition of endocytosis mapped to adenine. Adenine increased from 65.5 µM in broth to 246 µM in Gardnerella, but decreased to 9.5 µM in Atopobium supernatants. This translated into a decrease in anti-HIV activity when Gardnerella supernatants or adenine were added to cultures. Dapivirine was also impacted by microbiota, as drug bound irreversibly to bacteria, resulting in decreased antiviral activity. When drugs were incubated with vaginal swabs, 30.7% ± 5.7% of dapivirine and 63.9% ± 8.8% of tenofovir were recovered in supernatants after centrifugation of the bacterial cell pellet. In contrast, no impact of microbiota on the pharmacokinetics of the prodrugs, tenofovir disoproxil fumarate or tenofovir alafenamide, was observed. Together, these results demonstrate that microbiota may impact pharmacokinetics and contribute to inconsistent efficacy.


Asunto(s)
Antirretrovirales/farmacocinética , Microbiota/efectos de los fármacos , Microbiota/fisiología , Vagina/microbiología , Actinobacteria/efectos de los fármacos , Adenina/análogos & derivados , Adenina/metabolismo , Adenina/farmacocinética , Alanina , Bacterias , Endocitosis/efectos de los fármacos , Femenino , Gardnerella vaginalis/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Humanos , Concentración de Iones de Hidrógeno , Células Jurkat , Lactobacillus crispatus/efectos de los fármacos , Pirimidinas/farmacocinética , Tenofovir/farmacocinética
11.
mBio ; 9(3)2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844114

RESUMEN

Multidrug-resistant (MDR) tuberculosis, defined as tuberculosis resistant to the two first-line drugs isoniazid and rifampin, poses a serious problem for global tuberculosis control strategies. Lack of a safe and convenient model organism hampers progress in combating the spread of MDR strains of Mycobacterium tuberculosis We reasoned that auxotrophic MDR mutants of M. tuberculosis would provide a safe means for studying MDR M. tuberculosis without the need for a biosafety level 3 (BSL3) laboratory. Two different sets of triple auxotrophic mutants of M. tuberculosis were generated, which were auxotrophic for the nutrients leucine, pantothenate, and arginine or for leucine, pantothenate, and methionine. These triple auxotrophic strains retained their acid-fastness, their ability to generate both a drug persistence phenotype and drug-resistant mutants, and their susceptibility to plaque-forming mycobacterial phages. MDR triple auxotrophic mutants were obtained in a two-step fashion, selecting first for solely isoniazid-resistant or rifampin-resistant mutants. Interestingly, selection for isoniazid-resistant mutants of the methionine auxotroph generated isolates with single point mutations in katG, which encodes an isoniazid-activating enzyme, whereas similar selection using the arginine auxotroph yielded isoniazid-resistant mutants with large deletions in the chromosomal region containing katG These M. tuberculosis MDR strains were readily sterilized by second-line tuberculosis drugs and failed to kill immunocompromised mice. These strains provide attractive candidates for M. tuberculosis biology studies and drug screening outside the BSL3 facility.IMPORTANCE Elimination of Mycobacterium tuberculosis, the bacterium causing tuberculosis, requires enhanced understanding of its biology in order to identify new drugs against drug-susceptible and drug-resistant M. tuberculosis as well as uncovering novel pathways that lead to M. tuberculosis death. To circumvent the need for a biosafety level 3 (BSL3) laboratory when conducting research on M. tuberculosis, we have generated drug-susceptible and drug-resistant triple auxotrophic strains of M. tuberculosis suitable for use in a BSL2 laboratory. These strains originate from a double auxotrophic M. tuberculosis strain, H37Rv ΔpanCD ΔleuCD, which was reclassified as a BSL2 strain based on its lack of lethality in immunocompromised and immunocompetent mice. A third auxotrophy (methionine or arginine) was introduced via deletion of metA or argB, respectively, since M. tuberculosis ΔmetA and M. tuberculosis ΔargB are unable to survive amino acid auxotrophy and infect their host. The resulting triple auxotrophic M. tuberculosis strains retained characteristics of M. tuberculosis relevant for most types of investigations.


Asunto(s)
Contención de Riesgos Biológicos/normas , Farmacorresistencia Bacteriana Múltiple , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Animales , Antituberculosos/farmacología , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Humanos , Isoniazida/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Nutrientes , Rifampin/farmacología
12.
Proc Natl Acad Sci U S A ; 115(7): 1599-1604, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382761

RESUMEN

Worldwide control of the tuberculosis (TB) epidemic has not been achieved, and the latest statistics show that the TB problem might be more endemic than previously thought. Although drugs and a TB vaccine are available, TB eradication faces the challenges of increasing occurrences of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis (Mtb) strains. To forestall this trend, the development of drugs targeting novel pathways is actively pursued. Recently, enzymes of the electron transport chain (ETC) have been determined to be the targets of potent antimycobacterial drugs such as bedaquiline. We focused on the three NADH dehydrogenases (Ndh, NdhA, and Nuo) of the Mtb ETC with the purpose of defining their role and essentiality in Mtb Each NADH dehydrogenase was deleted in both virulent and BSL2-approved Mtb strains, from which the double knockouts ΔndhΔnuoAN and ΔndhAΔnuoAN were constructed. The ΔndhΔndhA double knockout could not be obtained, suggesting that at least one type II NADH dehydrogenase is required for Mtb growth. Δndh and ΔndhΔnuoAN showed growth defects in vitro and in vivo, susceptibility to oxidative stress, and redox alterations, while the phenotypes of ΔndhA, ΔnuoAN, and ΔndhAΔnuoAN were similar to the parental strain. Interestingly, although ΔnuoAN had no phenotype in vivo, ΔndhΔnuoAN was the most severely attenuated strain in mice, suggesting a key role for Nuo in vivo when Ndh is absent. We conclude that Ndh is the main NADH dehydrogenase of Mtb and that compounds that could target both Ndh and Nuo would be good candidates for TB drug development.


Asunto(s)
Viabilidad Microbiana , Mutación , Mycobacterium tuberculosis/enzimología , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Tuberculosis/virología , Virulencia , Animales , Diseño de Fármacos , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/fisiología , Tuberculosis/metabolismo , Tuberculosis/patología
13.
Proc Natl Acad Sci U S A ; 114(17): 4495-4500, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396391

RESUMEN

Persistence, manifested as drug tolerance, represents a significant obstacle to global tuberculosis control. The bactericidal drugs isoniazid and rifampicin kill greater than 99% of exponentially growing Mycobacterium tuberculosis (Mtb) cells, but the remaining cells are persisters, cells with decreased metabolic rate, refractory to killing by these drugs, and able to generate drug-resistant mutants. We discovered that the combination of cysteine or other small thiols with either isoniazid or rifampicin prevents the formation of drug-tolerant and drug-resistant cells in Mtb cultures. This effect was concentration- and time-dependent, relying on increased oxygen consumption that triggered enhanced production of reactive oxygen species. In infected murine macrophages, the addition of N-acetylcysteine to isoniazid treatment potentiated the killing of Mtb Furthermore, we demonstrate that the addition of small thiols to Mtb drug treatment shifted the menaquinol/menaquinone balance toward a reduced state that stimulates Mtb respiration and converts persister cells to metabolically active cells. This prevention of both persister cell formation and drug resistance leads ultimately to mycobacterial cell death. Strategies to enhance respiration and initiate oxidative damage should improve tuberculosis chemotherapies.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/fisiología , Mycobacterium tuberculosis/efectos de los fármacos , Consumo de Oxígeno/fisiología , Animales , Línea Celular , Roturas del ADN , Isoniazida , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Mycobacterium tuberculosis/fisiología , Especies Reactivas de Oxígeno , Rifampin
14.
PLoS Pathog ; 13(3): e1006250, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28278283

RESUMEN

Currently there are a dozen or so of new vaccine candidates in clinical trials for prevention of tuberculosis (TB) and each formulation attempts to elicit protection by enhancement of cell-mediated immunity (CMI). In contrast, most approved vaccines against other bacterial pathogens are believed to mediate protection by eliciting antibody responses. However, it has been difficult to apply this formula to TB because of the difficulty in reliably eliciting protective antibodies. Here, we developed capsular polysaccharide conjugates by linking mycobacterial capsular arabinomannan (AM) to either Mtb Ag85b or B. anthracis protective antigen (PA). Further, we studied their immunogenicity by ELISA and AM glycan microarrays and protection efficacy in mice. Immunization with either Abg85b-AM or PA-AM conjugates elicited an AM-specific antibody response in mice. AM binding antibodies stimulated transcriptional changes in Mtb. Sera from AM conjugate immunized mice reacted against a broad spectrum of AM structural variants and specifically recognized arabinan fragments. Conjugate vaccine immunized mice infected with Mtb had lower bacterial numbers in lungs and spleen, and lived longer than control mice. These findings provide additional evidence that humoral immunity can contribute to protection against Mtb.


Asunto(s)
Mananos/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Vacunas Conjugadas/inmunología , Aciltransferasas/inmunología , Traslado Adoptivo , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunidad Humoral/inmunología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Mycobacterium tuberculosis/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos
15.
mBio ; 7(5)2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27795387

RESUMEN

Persisters are the minor subpopulation of bacterial cells that lack alleles conferring resistance to a specific bactericidal antibiotic but can survive otherwise lethal concentrations of that antibiotic. In infections with Mycobacterium tuberculosis, such persisters underlie the need for long-term antibiotic therapy and contribute to treatment failure in tuberculosis cases. Here, we demonstrate the value of dual-reporter mycobacteriophages (Φ2DRMs) for characterizing M. tuberculosis persisters. The addition of isoniazid (INH) to exponentially growing M. tuberculosis cells consistently resulted in a 2- to 3-log decrease in CFU within 4 days, and the remaining ≤1% of cells, which survived despite being INH sensitive, were INH-tolerant persisters with a distinct transcriptional profile. We fused the promoters of several genes upregulated in persisters to the red fluorescent protein tdTomato gene in Φ2GFP10, a mycobacteriophage constitutively expressing green fluorescent protein (GFP), thus generating Φ2DRMs. A population enriched in INH persisters exhibited strong red fluorescence, by microscopy and flow cytometry, using a Φ2DRM with tdTomato controlled from the dnaK promoter. Interestingly, we demonstrated that, prior to INH exposure, a population primed for persistence existed in M. tuberculosis cells from both cultures and human sputa and that this population was highly enriched following INH exposure. We conclude that Φ2DRMs provide a new tool to identify and quantitate M. tuberculosis persister cells. IMPORTANCE: Tuberculosis (TB) is again the leading cause of death from a single infectious disease, having surpassed HIV. The recalcitrance of the TB pandemic is largely due to the ability of the pathogen Mycobacterium tuberculosis to enter a persistent state in which it is less susceptible to antibiotics and immune effectors, necessitating lengthy treatment. It has been difficult to study persister cells, as we have lacked tools to isolate these rare cells. In this article, we describe the development of dual-reporter mycobacteriophages that encode a green fluorescent marker of viability and in which the promoters of genes we have identified as induced in the persister state are fused to a gene encoding a red fluorescent protein. We show that these tools can identify heterogeneity in a cell population that correlates with propensity to survive antibiotic treatment and that the proportions of these subpopulations change in M. tuberculosis cells within human sputum during the course of treatment.


Asunto(s)
Tolerancia a Medicamentos , Micobacteriófagos/crecimiento & desarrollo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología , Técnicas Bacteriológicas , Fluorescencia , Perfilación de la Expresión Génica , Genes Reporteros , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Micobacteriófagos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virología , Coloración y Etiquetado
16.
JCI Insight ; 1(12)2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27536733

RESUMEN

A single-cycle herpes simplex virus (HSV) deleted in glycoprotein D (ΔgD-2) elicited high titer HSV-specific antibodies (Abs) that (i) were rapidly transported into the vaginal mucosa; (ii) elicited antibody-dependent cell-mediated cytotoxicity but little neutralization; (iii) provided complete protection against lethal intravaginal challenge; and (iv) prevented establishment of latency in mice. However, clinical isolates may differ antigenically and impact vaccine efficacy. To determine the breadth and further define mechanisms of protection of this vaccine candidate, we tested ΔgD-2 against a panel of clinical isolates in a murine skin challenge model. The isolates were genetically diverse, as evidenced by genomic sequencing and in vivo virulence. Prime and boost immunization (s.c.) with live but not heat- or UV-inactivated ΔgD-2 completely protected mice from challenge with the most virulent HSV-1 and HSV-2 isolates. Furthermore, mice were completely protected against 100 times the lethal dose that typically kills 90% of animals (LD90) of a South African isolate (SD90), and no latent virus was detected in dorsal root ganglia. Immunization was associated with rapid recruitment of HSV-specific FcγRIII- and FcγRIV-activating IgG2 Abs into the skin, resolution of local cytokine and cellular inflammatory responses, and viral clearance by day 5 after challenge. Rapid clearance and the absence of latent virus suggest that ΔgD-2 elicits sterilizing immunity.

17.
J Infect Dis ; 214(3): 426-37, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27234419

RESUMEN

BACKGROUND: Bacillus Calmette-Guerin (BCG) vaccine is widely used for the prevention of tuberculosis, despite limited efficacy. Most immunological studies of BCG or Mycobacterium tuberculosis strains grow bacteria in the presence of detergent, which also strips the mycobacterial capsule. The impact of the capsule on vaccine efficacy has not been explored. METHODS: We tested the influence of detergent in cultures of BCG and M. tuberculosis strains on the outcome of vaccination experiments on mice and transcriptional responses on M. tuberculosis RESULTS: Vaccination of mice with encapsulated BCG promoted a more potent immune response relative to vaccination with unencapsulated BCG, including higher polysaccharide-specific capsule antibody titers, higher interferon γ and interleukin 17 splenic responses, and more multifunctional CD4(+) T cells. These differences correlated with variability in the bacterial burden in lung and spleen of mice infected with encapsulated or unencapsulated M. tuberculosis The combination of vaccination and challenge with encapsulated strains resulted in the greatest protection efficacy. The transcriptome of encapsulated M. tuberculosis was similar to that of starvation, hypoxia, stationary phase, or nonreplicating persistence. CONCLUSIONS: The presence of detergent in growth media and a capsule on BCG were associated with differences in the outcome of vaccination, implying that these are important variables in immunological studies.


Asunto(s)
Vacuna BCG/inmunología , Cápsulas Bacterianas/inmunología , Cápsulas Bacterianas/metabolismo , Medios de Cultivo/química , Mycobacterium bovis/inmunología , Mycobacterium bovis/metabolismo , Adyuvantes Inmunológicos , Animales , Anticuerpos Antibacterianos/sangre , Linfocitos T CD4-Positivos/inmunología , Femenino , Perfilación de la Expresión Génica , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo
18.
Proc Natl Acad Sci U S A ; 112(37): 11660-5, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26290580

RESUMEN

The "chlamydial anomaly," first coined by James Moulder, describes the inability of researchers to detect or purify peptidoglycan (PG) from pathogenic Chlamydiae despite genetic and biochemical evidence and antibiotic susceptibility data that suggest its existence. We recently detected PG in Chlamydia trachomatis by a new metabolic cell wall labeling method, however efforts to purify PG from pathogenic Chlamydiae have remained unsuccessful. Pathogenic chlamydial species are known to activate nucleotide-binding oligomerization domain-containing protein 2 (NOD2) innate immune receptors by as yet uncharacterized ligands, which are presumed to be PG fragments (muramyl di- and tripeptides). We used the NOD2-dependent activation of NF-κB by C. trachomatis-infected cell lysates as a biomarker for the presence of PG fragments within specific lysate fractions. We designed a new method of muropeptide isolation consisting of a double filtration step coupled with reverse-phase HPLC fractionation of Chlamydia-infected HeLa cell lysates. Fractions that displayed NOD2 activity were analyzed by electrospray ionization mass spectrometry, confirming the presence of muramyl di- and tripeptides in Chlamydia-infected cell lysate fractions. Moreover, the mass spectrometry data of large muropeptide fragments provided evidence that transpeptidation and transglycosylation reactions occur in pathogenic Chlamydiae. These results reveal the composition of chlamydial PG and disprove the "glycanless peptidoglycan" hypothesis.


Asunto(s)
Chlamydia trachomatis/química , Espectrometría de Masas , Peptidoglicano/química , Biomarcadores/metabolismo , Pared Celular/química , Células HEK293 , Células HeLa , Humanos , FN-kappa B/metabolismo , Péptidos/química , Polisacáridos/química , Espectrometría de Masas en Tándem
19.
Cell Microbiol ; 17(2): 147-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25225110

RESUMEN

Inducing long-term protective memory CD8(+) T-cells is a desirable goal for vaccines against intracellular pathogens. However, the mechanisms of differentiation of CD8(+) T-cells into long-lived memory cells capable of mediating protection of immunized hosts remain incompletely understood. We have developed an experimental system using mice immunized with wild type (WT) or mutants of the intracellular bacterium Listeria monocytogenes (Lm) that either do or do not develop protective memory CD8(+) T-cells. We previously reported that mice immunized with Lm lacking functional SecA2, an auxiliary secretion system of gram-positive bacteria, did not differentiate functional memory CD8(+) T-cells that protected against a challenge infection with WT Lm. Herein we hypothesized that the p60 and NamA autolysins of Lm, which are major substrates of the SecA2 pathway, account for this phenotype. We generated Lm genetically deficient for genes encoding for the p60 and NamA proteins, ΔiapΔmurA Lm, and further characterized this mutant. Δp60ΔNamA Lm exhibited a strong filamentous phenotype, inefficiently colonized host tissues, and grew mostly outside cells. When Δp60ΔNamA Lm was made single unit, cell invasion was restored to WT levels during vaccination, yet induced memory T-cells still did not protect immunized hosts against recall infection. Recruitment of blood phagocytes and antigen-presenting cell activation was close to that of mice immunized with ΔActA Lm, which develop protective memory. However, key inflammatory factors involved in optimal T-cell programming such as IL-12 and type I IFN (IFN-I) were lacking, suggesting that cytokine signals may largely account for the observed phenotype. Thus, altogether, these results establish that p60 and NamA secreted by Lm promote primary host cell invasion, the inflammatory response and the differentiation of functional memory CD8(+) T-cells, by preventing Lm filamentation during growth and subsequent triggering of innate sensing mechanisms.


Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Memoria Inmunológica , Listeria monocytogenes/inmunología , Listeriosis/inmunología , N-Acetil Muramoil-L-Alanina Amidasa/inmunología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Animales , Proteínas Bacterianas/genética , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Eliminación de Gen , Listeria monocytogenes/genética , Listeria monocytogenes/fisiología , Listeriosis/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , N-Acetil Muramoil-L-Alanina Amidasa/genética , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
20.
PLoS Pathog ; 10(11): e1004510, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25412183

RESUMEN

In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2); we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol) which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Modelos Biológicos , Mycobacterium tuberculosis/enzimología , Consumo de Oxígeno/fisiología , Succinato Deshidrogenasa/metabolismo , Animales , Proteínas Bacterianas/genética , Ratones , Ratones Noqueados , Viabilidad Microbiana/genética , Mycobacterium tuberculosis/genética , Succinato Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...