Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-27298467

RESUMEN

Homo erectus was the first hominin to exhibit extensive range expansion. This extraordinary departure from Africa, especially into more temperate climates of Eurasia, has been variously related to technological, energetic and foraging shifts. The temporal and regional anatomical variation in H. erectus suggests that a high level of developmental plasticity, a key factor in the ability of H. sapiens to occupy a variety of habitats, may also have been present in H. erectus. Developmental plasticity, the ability to modify development in response to environmental conditions, results in differences in size, shape and dimorphism across populations that relate in part to levels of resource sufficiency and extrinsic mortality. These differences predict not only regional variations but also overall smaller adult sizes and lower levels of dimorphism in instances of resource scarcity and high predator load. We consider the metric variation in 35 human and non-human primate 'populations' from known environmental contexts and 14 time- and space-restricted paleodemes of H. erectus and other fossil Homo Human and non-human primates exhibit more similar patterns of variation than expected, with plasticity evident, but in differing patterns by sex across populations. The fossil samples show less evidence of variation than expected, although H. erectus varies more than Neandertals.This article is part of the themed issue 'Major transitions in human evolution'.


Asunto(s)
Evolución Biológica , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Hominidae/crecimiento & desarrollo , Animales , Ambiente
2.
Anat Res Int ; 2011: 714624, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22567298

RESUMEN

This study compares limb lengths and joint diameters in the skeletons of six macaque species (Macaca assamensis, M. fascicularis, M. fuscata, M. mulatta, M. nemestrina, and M. thibetana) from a broad range of habitats and climates in order to test whether ambient temperatures, latitude, and altitude influence interspecific variation in limb morphology in this widely dispersed genus. Analysis of variance, principal component analysis, and partial correlation analysis reveal that species from temperate latitudes and high elevations tend to have short limbs and large joint diameters for their sizes while species from tropical latitudes and low elevations tend to have long limbs and small joint diameters. Interspecific variations in intra- and interlimb length proportions also reflect phylogeny and subtle differences in locomotion. The results of this study suggest that climatic conditions are important factors among many ecological variables that influence limb morphology in this geographically widespread genus.

3.
J Hum Evol ; 54(3): 287-95, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17949791

RESUMEN

Paleoanthropologists have long noted the unique "hyper-barrel-shaped" Neandertal thorax as inferred from fragmentary ribs, clavicles, and sterna. Yet scholars disagree whether the Neandertal thorax represents an adaptation to cold climates or elevated activity levels. Given the difficulties of reconstructing overall chest shape from isolated and fragmentary thoracic skeletal elements, it is worthwhile comparing Neandertals and contemporaneous early modern human fossils from the same geographic region to recent modern human skeletons that are known to have enlarged chests. This study compares thoracic skeletal morphology in two Near Eastern Neandertals (Tabun C1 and Shanidar 3) and two early modern humans from the same region (Skhul IV and V) with four samples of recent modern human skeletons from the Andes (n=347): two coastal groups and two groups from high altitudes. The two highland groups, similar to their living descendants, exhibit morphological evidence of anteroposteriorly deep and mediolaterally wide chests as part of respiratory adaptations to high-altitude hypoxia. I calculated the percentage of deviation of each Neandertal and early modern human fossil from the means of the four recent modern human samples for clavicle and rib lengths and curvatures. Shanidar 3 and Tabun C1 exhibit ribs that are slightly larger and less curved than the Andean samples, indicating slightly larger thoracic skeletons than modern humans who are known to have enlarged chests in response to increased respiratory demands. Skhul IV and V have significantly shorter ribs with greater curvature suggesting especially narrow thoracic skeletons. Comparisons with Andean populations suggest that the enlarged thoraces of Neandertals may reflect high activity levels, although results from this study do not exclude cold adaptation as an explanatory factor.


Asunto(s)
Altitud , Fósiles , Hominidae/anatomía & histología , Tórax/anatomía & histología , Animales , Femenino , Humanos , Masculino
4.
Am J Phys Anthropol ; 134(1): 36-49, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17503449

RESUMEN

Living humans from the highland Andes exhibit antero-posteriorly and medio-laterally enlarged chests in response to high-altitude hypoxia. This study hypothesizes that morphological responses to high-altitude hypoxia should also be evident in pre-Contact Andean groups. Thoracic skeletal morphology in four groups of human skeletons (N = 347) are compared: two groups from coastal regions (Ancón, Peru, n = 79 and Arica, Chile, n = 123) and two groups from high altitudes (San Pedro de Atacama, Chile, n = 102 and Machu Picchu and Cuzco, Peru, n = 43). Osteometric variables that represent proportions of chest width and depth include sternal and clavicular lengths and breadths and rib length, curvature, and area. Each variable was measured relative to body size, transformed into logarithmic indices, and compared across sex-specific groups using ANOVA and Tukey multiple comparison tests. Atacama highlanders have the largest sternal and clavicular proportions and ribs with the greatest area and least amount of curvature, features that suggest an antero-posteriorly deep and mediolaterally wide thoracic skeleton. Ancón lowlanders exhibit proportions indicating narrower and shallower chests. Machu Picchu and Cuzco males cluster with the other highland group in rib curvature and area at the superior levels of the thorax, whereas chest proportions in Machu Picchu and Cuzco females resemble those of lowlanders. The variation in Machu Picchu and Cuzco males and females is interpreted as the result of population migrations. The presence of morphological traits indicative of enlarged chests in some highland individuals suggests that high-altitude hypoxia was an environmental stressor shaping the biology of highland Andean groups during the pre-Contact period.


Asunto(s)
Aclimatación , Altitud , Clavícula/anatomía & histología , Hipoxia , Tórax/anatomía & histología , Evolución Biológica , Pesos y Medidas Corporales , Chile , Femenino , Humanos , Masculino , Perú
5.
Am J Phys Anthropol ; 128(3): 569-85, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15895419

RESUMEN

Living human populations from high altitudes in the Andes exhibit relatively short limbs compared with neighboring groups from lower elevations as adaptations to cold climates characteristic of high-altitude environments. This study compares relative limb lengths and proportions in pre-Contact human skeletons from different altitudes to test whether ecogeographic variation also existed in Andean prehistory. Maximum lengths of the humerus, radius, femur, and tibia, and femoral head breadth are measured in sex-specific groups of adult human skeletons (N = 346) from the central (n = 80) and the south-central (n = 123) Andean coasts, the Atacama Desert at 2,500 m (n = 102), and the southern Peruvian highlands at 2,000-3,800 m (n = 41). To test whether limb lengths vary with altitude, comparisons are made of intralimb proportions, limb lengths against body mass estimates derived from published equations, limb lengths against the geometric mean of all measurements, and principal component analysis. Intralimb proportions do not statistically differ between coastal groups and those from the Atacama Desert, whereas intralimb proportions are significantly shorter in the Peruvian highland sample. Overall body size and limb lengths relative to body size vary along an altitudinal gradient, with larger individuals from coastal environments and smaller individuals with relatively longer limbs for their size from higher elevations. Ecogeographic variation in relation to climate explains the variation in intralimb proportions, and dietary variation may explain the altitudinal cline in body size and limb lengths relative to body size. The potential effects of gene flow on variation in body proportions in Andean prehistory are also explored.


Asunto(s)
Altitud , Composición Corporal/fisiología , Antropología Física , Chile , Femenino , Fémur/fisiología , Historia Antigua , Humanos , Húmero/fisiología , Masculino , Radio (Anatomía)/fisiología , Tibia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA