Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 293(39): 15043-15054, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30054276

RESUMEN

Although EcoR124 is one of the better-studied Type I restriction-modification enzymes, it still presents many challenges to detailed analyses because of its structural and functional complexity and missing structural information. In all available structures of its motor subunit HsdR, responsible for DNA translocation and cleavage, a large part of the HsdR C terminus remains unresolved. The crystal structure of the C terminus of HsdR, obtained with a crystallization chaperone in the form of pHluorin fusion and refined to 2.45 Å, revealed that this part of the protein forms an independent domain with its own hydrophobic core and displays a unique α-helical fold. The full-length HsdR model, based on the WT structure and the C-terminal domain determined here, disclosed a proposed DNA-binding groove lined by positively charged residues. In vivo and in vitro assays with a C-terminal deletion mutant of HsdR supported the idea that this domain is involved in complex assembly and DNA binding. Conserved residues identified through sequence analysis of the C-terminal domain may play a key role in protein-protein and protein-DNA interactions. We conclude that the motor subunit of EcoR124 comprises five structural and functional domains, with the fifth, the C-terminal domain, revealing a unique fold characterized by four conserved motifs in the IC subfamily of Type I restriction-modification systems. In summary, the structural and biochemical results reported here support a model in which the C-terminal domain of the motor subunit HsdR of the endonuclease EcoR124 is involved in complex assembly and DNA binding.


Asunto(s)
Proteínas de Unión al ADN/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Secuencia de Aminoácidos , Fenómenos Biofísicos , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Conformación Proteica , Dominios Proteicos/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética
2.
J Mol Model ; 24(7): 176, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29943199

RESUMEN

Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.


Asunto(s)
ADN Helicasas/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Adenosina Trifosfato/química , Secuencia de Aminoácidos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Activación Enzimática , Hidrólisis , Simulación de Dinámica Molecular , Complejos Multienzimáticos/química , Mutación , Análisis de Componente Principal , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
3.
PeerJ ; 5: e2887, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28133570

RESUMEN

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.

4.
PLoS One ; 10(6): e0128700, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039067

RESUMEN

Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling.


Asunto(s)
Adenosina Trifosfato/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Exodesoxirribonucleasa V/química , Subunidades de Proteína/química , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , División del ADN , ADN Bacteriano , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/metabolismo , Expresión Génica , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transducción de Señal
5.
J Mol Model ; 20(7): 2334, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24972799

RESUMEN

Restriction-modification systems protect bacteria from foreign DNA. Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA-cleavage and ATP-dependent DNA translocation activities located on endonuclease/motor subunit HsdR. The recent structure of the first intact motor subunit of the type I restriction enzyme from plasmid EcoR124I suggested a mechanism by which stalled translocation triggers DNA cleavage via a lysine residue on the endonuclease domain that contacts ATP bound between the two helicase domains. In the present work, molecular dynamics simulations are used to explore this proposal. Molecular dynamics simulations suggest that the Lys-ATP contact alternates with a contact with a nearby loop housing the conserved QxxxY motif that had been implicated in DNA cleavage. This model is tested here using in vivo and in vitro experiments. The results indicate how local interactions are transduced to domain motions within the endonuclease/motor subunit.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sitios de Unión , Catálisis , Secuencia Conservada , ADN/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Genotipo , Hidrólisis , Cinética , Lisina , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Teoría Cuántica , Relación Estructura-Actividad
6.
J Mol Biol ; 384(5): 1273-86, 2008 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-18952104

RESUMEN

The type I restriction-modification enzyme EcoR124I comprises three subunits with the stoichiometry HsdR2/HsdM2/HsdS1. The HsdR subunits are archetypical examples of the fusion between nuclease and helicase domains into a single polypeptide, a linkage that is found in a great many other DNA processing enzymes. To explore the interrelationship between these physically linked domains, we examined the DNA translocation properties of EcoR124I complexes in which the HsdR subunits had been mutated in the RecB-like nuclease motif II or III. We found that nuclease mutations can have multiple effects on DNA translocation despite being distinct from the helicase domain. In addition to reductions in DNA cleavage activity, we also observed decreased translocation and ATPase rates, different enzyme populations with different characteristic translocation rates, a tendency to stall during initiation and altered HsdR turnover dynamics. The significance of these observations to our understanding of domain interactions in molecular machines is discussed.


Asunto(s)
ADN Helicasas/química , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Endonucleasas/química , Escherichia coli/enzimología , Proteínas Motoras Moleculares/química , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bioensayo , Transporte Biológico , Cinética , Proteínas Motoras Moleculares/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Pinzas Ópticas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
7.
BMC Microbiol ; 8: 106, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18588664

RESUMEN

BACKGROUND: Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants. RESULTS: We have characterised a restriction-modification system EcoA0ORF42P of the commensal Escherichia coli strain A0 34/86 (O83: K24: H31). This system, designated as EcoAO83I, is a new functional member of the Type IB family, whose specificity differs from those of known Type IB enzymes, as was demonstrated by an immunological cross-reactivity and a complementation assay. Using the plasmid transformation method and the RM search computer program, we identified the DNA recognition sequence of the EcoAO83I as GGA(8N)ATGC. In consistence with the amino acids alignment data, the 3' TRD component of the recognition sequence is identical to the sequence recognized by the EcoEI enzyme. The A-T (modified adenine) distance is identical to that in the EcoAI and EcoEI recognition sites, which also indicates that this system is a Type IB member. Interestingly, the recognition sequence we determined here is identical to the previously reported prototype sequence for Eco377I and its isoschizomers. CONCLUSION: Putative restriction-modification system EcoA0ORF42P in the commensal Escherichia coli strain A0 34/86 (O83: K24: H31) was found to be a member of the Type IB family and was designated as EcoAO83I. Combination of the classical biochemical and bacterial genetics approaches with comparative genomics might contribute effectively to further classification of many other putative Type-I enzymes, especially in clinical samples.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Anticuerpos Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Prueba de Complementación Genética , Genómica , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
8.
Nucleic Acids Res ; 36(12): 3939-49, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18511464

RESUMEN

The Type I restriction-modification enzyme EcoR124I is an ATP-dependent endonuclease that uses dsDNA translocation to locate and cleave distant non-specific DNA sites. Bioinformatic analysis of the HsdR subunits of EcoR124I and related Type I enzymes showed that in addition to the principal PD-(E/D)xK Motifs, I, II and III, a QxxxY motif is also present that is characteristic of RecB-family nucleases. The QxxxY motif resides immediately C-terminal to Motif III within a region of predicted alpha-helix. Using mutagenesis, we examined the role of the Q and Y residues in DNA binding, translocation and cleavage. Roles for the QxxxY motif in coordinating the catalytic residues or in stabilizing the nuclease domain on the DNA are discussed.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Exodesoxirribonucleasa V/química , Cinética , Datos de Secuencia Molecular , Mutagénesis , Subunidades de Proteína/química , Transporte de Proteínas , Alineación de Secuencia
9.
FEMS Microbiol Lett ; 270(1): 171-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17439637

RESUMEN

Phosphorylation of Type I restriction-modification (R-M) enzymes EcoKI, EcoAI, and EcoR124I - representatives of IA, IB, and IC families, respectively - was analysed in vivo by immunoblotting of endogenous phosphoproteins isolated from Escherichia coli strains harbouring the corresponding hsd genes, and in vitro by a phosphorylation assay using protein kinase present in subcellular fractions of E. coli. From all three R-M enzymes, the HsdR subunit of EcoKI system was the only subunit that was phosphorylated. Further, evidence is presented that HsdR is phosphorylated in vivo only when coproduced with HsdM and HsdS subunits - as part of assembled EcoKI restriction endonuclease, while the individually produced HsdR subunit is not phosphorylated. In vitro phosphorylation of the HsdR subunit of purified EcoKI endonuclease occurs on Thr, and is strictly dependent on the addition of a catalytic amount of cytoplasmic fraction isolated from E. coli. So far this is the first case of phosphorylation of a Type I R-M enzyme reported.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Proteínas de Escherichia coli/metabolismo , Western Blotting , Cromatografía en Capa Delgada , Electroforesis , Escherichia coli/enzimología , Escherichia coli/metabolismo , Inmunoprecipitación , Ácidos Fosfoaminos/metabolismo , Fosforilación , Subunidades de Proteína/metabolismo
10.
Nucleic Acids Res ; 34(7): 1992-2005, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16614449

RESUMEN

Recent publication of crystal structures for the putative DNA-binding subunits (HsdS) of the functionally uncharacterized Type I restriction-modification (R-M) enzymes MjaXIP and MgeORF438 have provided a convenient structural template for analysis of the more extensively characterized members of this interesting family of multisubunit molecular motors. Here, we present a structural model of the Type IC M.EcoR124I DNA methyltransferase (MTase), comprising the HsdS subunit, two HsdM subunits, the cofactor AdoMet and the substrate DNA molecule. The structure was obtained by docking models of individual subunits generated by fold-recognition and comparative modelling, followed by optimization of inter-subunit contacts by energy minimization. The model of M.EcoR124I has allowed identification of a number of functionally important residues that appear to be involved in DNA-binding. In addition, we have mapped onto the model the location of several new mutations of the hsdS gene of M.EcoR124I that were produced by misincorporation mutagenesis within the central conserved region of hsdS, we have mapped all previously identified DNA-binding mutants of TRD2 and produced a detailed analysis of the location of surface-modifiable lysines. The model structure, together with location of the mutant residues, provides a better background on which to study protein-protein and protein-DNA interactions in Type I R-M systems.


Asunto(s)
Proteínas Bacterianas/química , Enzimas de Restricción-Modificación del ADN/química , Proteínas de Unión al ADN/química , Modelos Moleculares , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia Conservada , ADN/química , Enzimas de Restricción-Modificación del ADN/genética , Datos de Secuencia Molecular , Mutación , Subunidades de Proteína/química , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...