Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101257, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38779337

RESUMEN

Mutations in the DYSF gene, encoding the protein dysferlin, lead to several forms of muscular dystrophy. In healthy skeletal muscle, dysferlin concentrates in the transverse tubules and is involved in repairing the sarcolemma and stabilizing Ca2+ signaling after membrane disruption. The DYSF gene encodes 7-8 C2 domains, several Fer and Dysf domains, and a C-terminal transmembrane sequence. Because its coding sequence is too large to package in adeno-associated virus, the full-length sequence is not amenable to current gene delivery methods. Thus, we have examined smaller versions of dysferlin, termed "nanodysferlins," designed to eliminate several C2 domains, specifically C2 domains D, E, and F; B, D, and E; and B, D, E, and F. We also generated a variant by replacing eight amino acids in C2G in the nanodysferlin missing domains D through F. We electroporated dysferlin-null A/J mouse myofibers with Venus fusion constructs of these variants, or as untagged nanodysferlins together with GFP, to mark transfected fibers We found that, although these nanodysferlins failed to concentrate in transverse tubules, three of them supported membrane repair after laser wounding while all four bound the membrane repair protein, TRIM72/MG53, similar to WT dysferlin. By contrast, they failed to suppress Ca2+ waves after myofibers were injured by mild hypoosmotic shock. Our results suggest that the internal C2 domains of dysferlin are required for normal t-tubule localization and Ca2+ signaling and that membrane repair does not require these C2 domains.

2.
Cells ; 12(12)2023 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-37371130

RESUMEN

Plasma membrane repair is an essential cellular mechanism that reseals membrane disruptions after a variety of insults, and compromised repair capacity can contribute to the progression of many diseases. Neurodegenerative diseases are marked by membrane damage from many sources, reduced membrane integrity, elevated intracellular calcium concentrations, enhanced reactive oxygen species production, mitochondrial dysfunction, and widespread neuronal death. While the toxic intracellular effects of these changes in cellular physiology have been defined, the specific mechanism of neuronal death in certain neurodegenerative diseases remains unclear. An abundance of recent evidence indicates that neuronal membrane damage and pore formation in the membrane are key contributors to neurodegenerative disease pathogenesis. In this review, we have outlined evidence supporting the hypothesis that membrane damage is a contributor to neurodegenerative diseases and that therapeutically enhancing membrane repair can potentially combat neuronal death.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular , Membrana Celular/metabolismo
3.
Biomedicines ; 11(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37239109

RESUMEN

Dysferlinopathies are a group of autosomal recessive muscular dystrophies caused by pathogenic variants in the DYSF gene. While several animal models of dysferlinopathy have been developed, most of them involve major disruptions of the Dysf gene locus that are not optimal for studying human dysferlinopathy, which is often caused by single nucleotide substitutions. In this study, the authors describe a new murine model of dysferlinopathy that carries a nonsense mutation in Dysf exon 32, which has been identified in several patients with dysferlinopathy. This mouse model, called Dysf p.Y1159X/p.Y1159X, displays several molecular, histological, and functional defects observed in dysferlinopathy patients and other published mouse models. This mutant mouse model is expected to be useful for testing various therapeutic approaches such as termination codon readthrough, pharmacological approaches, and exon skipping. Therefore, the data presented in this study strongly support the use of this animal model for the development of preclinical strategies for the treatment of dysferlinopathies.

4.
Tissue Eng Part C Methods ; 29(8): 349-360, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37097213

RESUMEN

Isolated individual myofibers are valuable experimental models that can be used in various conditions to understand skeletal muscle physiology and pathophysiology at the tissue and cellular level. This report details a time- and cost-effective method for isolation of single myofibers from the flexor digitorum brevis (FDB) muscle in both young and aged mice. The FDB muscle was chosen for its documented history in single myofiber experiments. By modifying published methods for FDB myofiber isolation, we have optimized the protocol by first separating FDB muscle into individual bundles before the digestion, followed by optimizing the subsequent digestion medium conditions to ensure reproducibility. Morphological and functional assessments demonstrate a high yield of isolated FDB myofibers with sarcolemma integrity achieved in a shorter time frame than previous published procedures. This method could be also adapted to other types of skeletal muscle. Additionally, this highly reproducible method can greatly reduce the number of animals needed to yield adequate numbers of myofibers for experiments. Thus, this advanced method for myofiber isolation has the potential to accelerate research in skeletal muscle physiology and screening potential therapeutics "ex vivo" for muscle diseases and regeneration.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Reproducibilidad de los Resultados
5.
Kidney Int ; 103(6): 1093-1104, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36921719

RESUMEN

Transcriptional profiling studies have identified several protective genes upregulated in tubular epithelial cells during acute kidney injury (AKI). Identifying upstream transcriptional regulators could lead to the development of therapeutic strategies augmenting the repair processes. SOX9 is a transcription factor controlling cell-fate during embryonic development and adult tissue homeostasis in multiple organs including the kidneys. SOX9 expression is low in adult kidneys; however, stress conditions can trigger its transcriptional upregulation in tubular epithelial cells. SOX9 plays a protective role during the early phase of AKI and facilitates repair during the recovery phase. To identify the upstream transcriptional regulators that drive SOX9 upregulation in tubular epithelial cells, we used an unbiased transcription factor screening approach. Preliminary screening and validation studies show that zinc finger protein 24 (ZFP24) governs SOX9 upregulation in tubular epithelial cells. ZFP24, a Cys2-His2 (C2H2) zinc finger protein, is essential for oligodendrocyte maturation and myelination; however, its role in the kidneys or in SOX9 regulation remains unknown. Here, we found that tubular epithelial ZFP24 gene ablation exacerbated ischemia, rhabdomyolysis, and cisplatin-associated AKI. Importantly, ZFP24 gene deletion resulted in suppression of SOX9 upregulation in injured tubular epithelial cells. Chromatin immunoprecipitation and promoter luciferase assays confirmed that ZFP24 bound to a specific site in both murine and human SOX9 promoters. Importantly, CRISPR/Cas9-mediated mutation in the ZFP24 binding site in the SOX9 promoter in vivo led to suppression of SOX9 upregulation during AKI. Thus, our findings identify ZFP24 as a critical stress-responsive transcription factor protecting tubular epithelial cells through SOX9 upregulation.


Asunto(s)
Lesión Renal Aguda , Factor de Transcripción SOX9 , Animales , Humanos , Ratones , Lesión Renal Aguda/prevención & control , Células Epiteliales/metabolismo , Riñón/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Regulación hacia Arriba , Dedos de Zinc
6.
J Mol Cell Cardiol ; 176: 84-96, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724829

RESUMEN

Troponin I (TnI) is a key regulator of cardiac contraction and relaxation with TnI Ser-23/24 phosphorylation serving as a myofilament mechanism to modulate cardiac function. Basal cardiac TnI Ser-23/24 phosphorylation is high such that both increased and decreased TnI phosphorylation may modulate cardiac function. While the effects of increasing TnI Ser-23/24 phosphorylation on heart function are well established, the effects of decreasing TnI Ser-23/24 phosphorylation are not clear. To understand the in vivo role of decreased TnI Ser-23/24 phosphorylation, mice expressing TnI with Ser-23/24 mutated to alanine (TnI S23/24A) that lack the ability to be phosphorylated at these residues were subjected to echocardiography and pressure-volume hemodynamic measurements in the absence or presence of physiological (pacing increasing heart rate or adrenergic stimulation) or pathological (transverse aortic constriction (TAC)) stress. In the absence of pathological stress, the lack of TnI Ser-23/24 phosphorylation impaired systolic and diastolic function. TnI S23/24A mice also had an impaired systolic and diastolic response upon stimulation increased heart rate and an impaired adrenergic response upon dobutamine infusion. Following pathological cardiac stress induced by TAC, TnI S23/24A mice had a greater increase in ventricular mass, worse diastolic function, and impaired systolic and diastolic function upon increasing heart rate. These findings demonstrate that mice lacking the ability to phosphorylate TnI at Ser-23/24 have impaired in vivo systolic and diastolic cardiac function, a blunted cardiac reserve and a worse response to pathological stress supporting decreased TnI Ser23/24 phosphorylation is a modulator of these processes in vivo.


Asunto(s)
Cardiopatías , Troponina I , Ratones , Animales , Fosforilación , Troponina I/metabolismo , Ratones Transgénicos , Contracción Miocárdica , Adrenérgicos/farmacología , Calcio/metabolismo
7.
Acta Neuropathol Commun ; 11(1): 15, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653852

RESUMEN

Dysferlin is a Ca2+-activated lipid binding protein implicated in muscle membrane repair. Recessive variants in DYSF result in dysferlinopathy, a progressive muscular dystrophy. We showed previously that calpain cleavage within a motif encoded by alternatively spliced exon 40a releases a 72 kDa C-terminal minidysferlin recruited to injured sarcolemma. Herein we use CRISPR/Cas9 gene editing to knock out murine Dysf exon 40a, to specifically assess its role in membrane repair and development of dysferlinopathy. We created three Dysf exon 40a knockout (40aKO) mouse lines that each express different levels of dysferlin protein ranging from ~ 90%, ~ 50% and ~ 10-20% levels of wild-type. Histopathological analysis of skeletal muscles from all 12-month-old 40aKO lines showed virtual absence of dystrophic features and normal membrane repair capacity for all three 40aKO lines, as compared with dysferlin-null BLAJ mice. Further, lipidomic and proteomic analyses on 18wk old quadriceps show all three 40aKO lines are spared the profound lipidomic/proteomic imbalance that characterises dysferlin-deficient BLAJ muscles. Collective results indicate that membrane repair does not depend upon calpain cleavage within exon 40a and that ~ 10-20% of WT dysferlin protein expression is sufficient to maintain the muscle lipidome, proteome and membrane repair capacity to crucially prevent development of dysferlinopathy.


Asunto(s)
Proteínas de la Membrana , Distrofia Muscular de Cinturas , Ratones , Animales , Disferlina/genética , Disferlina/metabolismo , Ratones Noqueados , Proteínas de la Membrana/metabolismo , Calpaína/genética , Proteómica , Distrofia Muscular de Cinturas/patología , Músculo Esquelético/patología , Exones/genética
8.
Cells ; 11(9)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563723

RESUMEN

Duchenne muscular dystrophy (DMD) is a common X-linked degenerative muscle disorder that involves mutations in the DMD gene that frequently reduce the expression of the dystrophin protein, compromising the structural integrity of the sarcolemmal membrane and leaving it vulnerable to injury during cycles of muscle contraction and relaxation. This results in an increased frequency of sarcolemma disruptions that can compromise the barrier function of the membrane and lead to death of the myocyte. Sarcolemmal membrane repair processes can potentially compensate for increased membrane disruptions in DMD myocytes. Previous studies demonstrated that TRIM72, a muscle-enriched tripartite motif (TRIM) family protein also known as mitsugumin 53 (MG53), is a component of the cell membrane repair machinery in striated muscle. To test the importance of membrane repair in striated muscle in compensating for the membrane fragility in DMD, we crossed TRIM72/MG53 knockout mice into the mdx mouse model of DMD. These double knockout (DKO) mice showed compromised sarcolemmal membrane integrity compared to mdx mice, as measured by immunoglobulin G staining and ex vivo muscle laser microscopy wounding assays. We also found a significant decrease in muscle ex vivo contractile function as compared to mdx mice at both 6 weeks and 1.5 years of age. As the DKO mice aged, they developed more extensive fibrosis in skeletal muscles compared to mdx. Our findings indicate that TRIM72/MG53-mediated membrane repair can partially compensate for the sarcolemmal fragility associated with DMD and that the loss of membrane repair results in increased pathology in the DKO mice.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/metabolismo , Sarcolema/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
9.
Sci Rep ; 12(1): 3712, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273199

RESUMEN

Climate change poses a major threat to coral reefs. We conducted an outdoor 22-month experiment to investigate if coral could not just survive, but also physiologically cope, with chronic ocean warming and acidification conditions expected later this century under the Paris Climate Agreement. We recorded survivorship and measured eleven phenotypic traits to evaluate the holobiont responses of Hawaiian coral: color, Symbiodiniaceae density, calcification, photosynthesis, respiration, total organic carbon flux, carbon budget, biomass, lipids, protein, and maximum Artemia capture rate. Survivorship was lowest in Montipora capitata and only some survivors were able to meet metabolic demand and physiologically cope with future ocean conditions. Most M. capitata survivors bleached through loss of chlorophyll pigments and simultaneously experienced increased respiration rates and negative carbon budgets due to a 236% increase in total organic carbon losses under combined future ocean conditions. Porites compressa and Porites lobata had the highest survivorship and coped well under future ocean conditions with positive calcification and increased biomass, maintenance of lipids, and the capacity to exceed their metabolic demand through photosynthesis and heterotrophy. Thus, our findings show that significant biological diversity within resilient corals like Porites, and some genotypes of sensitive species, will persist this century provided atmospheric carbon dioxide levels are controlled. Since Porites corals are ubiquitous throughout the world's oceans and often major reef builders, the persistence of this resilient genus provides hope for future reef ecosystem function globally.


Asunto(s)
Antozoos , Aclimatación , Animales , Antozoos/fisiología , Arrecifes de Coral , Ecosistema , Hawaii , Concentración de Iones de Hidrógeno , Lípidos , Agua de Mar , Temperatura
10.
J Physiol ; 600(8): 1953-1968, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35156706

RESUMEN

Dysferlin is an integral membrane protein of the transverse tubules of skeletal muscle that is mutated or absent in limb girdle muscular dystrophy 2B and Miyoshi myopathy. Here we examine the role of dysferlin's seven C2 domains, C2A through C2G, in membrane repair and Ca2+ release, as well as in targeting dysferlin to the transverse tubules of skeletal muscle. We report that deletion of either domain C2A or C2B inhibits membrane repair completely, whereas deletion of C2C, C2D, C2E, C2F or C2G causes partial loss of membrane repair that is exacerbated in the absence of extracellular Ca2+ . Deletion of C2C, C2D, C2E, C2F or C2G also causes significant changes in Ca2+ release, measured as the amplitude of the Ca2+ transient before or after hypo-osmotic shock and the appearance of Ca2+ waves. Most deletants accumulate in endoplasmic reticulum. Only the C2A domain can be deleted without affecting dysferlin trafficking to transverse tubules, but Dysf-ΔC2A fails to support normal Ca2+ signalling after hypo-osmotic shock. Our data suggest that (i) every C2 domain contributes to repair; (ii) all C2 domains except C2B regulate Ca2+ signalling; (iii) transverse tubule localization is insufficient for normal Ca2+ signalling; and (iv) Ca2+ dependence of repair is mediated by C2C through C2G. Thus, dysferlin's C2 domains have distinct functions in Ca2+ signalling and sarcolemmal membrane repair and may play distinct roles in skeletal muscle. KEY POINTS: Dysferlin, a transmembrane protein containing seven C2 domains, C2A through C2G, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients and participates in sarcolemmal membrane repair. Each of dysferlin's C2 domains except C2B regulate Ca2+ signalling. Localization of dysferlin variants to the transverse tubules is not sufficient to support normal Ca2+ signalling or membrane repair. Each of dysferlin's C2 domains contributes to sarcolemmal membrane repair. The Ca2+ dependence of membrane repair is mediated by C2C through C2G. Dysferlin's C2 domains therefore have distinct functions in Ca2+ signalling and sarcolemmal membrane repair.


Asunto(s)
Dominios C2 , Proteínas de la Membrana , Disferlina/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo
11.
Heliyon ; 6(9): e04866, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015383

RESUMEN

AIMS: Dermatomyositis (DM) is a progressive, idiopathic inflammatory myopathy with poorly understood pathogenesis. A hallmark of DM is an increased risk for developing breast, ovarian, and lung cancer. Since autoantibodies against anti-TIF-1-γ, a member of the tripartite motif (TRIM) proteins, has a strong association with malignancy, we examined expression of the TRIM gene family to identify pathways that may be contributing to DM pathogenesis. MATERIALS AND METHODS: We employed the Search Tag Analyze Resource for GEO platform to search the NCBI Gene Expression Omnibus to elucidate TRIM family gene expression as well as oncogenic drivers in DM pathology. We conducted meta-analysis of the data from human skin (60 DM vs 34 healthy) and muscle (71 DM vs 22 healthy). KEY FINDINGS: We identified genes involved in innate immunity, antigen presentation, metabolism, and other cellular processes as facilitators of DM disease activity and confirmed previous observations regarding the presence of a robust interferon signature. Moreover, analysis of DM muscle samples revealed upregulation of TRIM14, TRIM22, TRIM25, TRIM27, and TRIM38. Likewise, analysis of DM skin samples showed upregulation of TRIM5, TRIM6, TRIM 14, TRIM21, TRIM34, and TRIM38 and downregulation of TRIM73. Additionally, we noted upregulation of oncogenes IGLC1, IFI44, POSTN, MYC, NPM1, and IDO1 and related this change to interferon signaling. While the clinical data associated with genetic data that was analyzed did not contain clinical data regarding malignancy in these cohorts, the observed genetic changes may be associated with homeostatic and signaling changes that relate to the increased risk in malignancy in DM. SIGNIFICANCE: Our results implicate previously unknown genes as potential drivers of DM pathology and suggest certain TRIM family members may have disease-specific roles with potential diagnostic and therapeutic implications.

12.
J Clin Invest ; 130(8): 4440-4455, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32687067

RESUMEN

Idiopathic inflammatory myopathies (IIM) involve chronic inflammation of skeletal muscle and subsequent muscle degeneration due to an uncontrolled autoimmune response; however, the mechanisms leading to pathogenesis are not well understood. A compromised sarcolemmal repair process could promote an aberrant exposure of intramuscular antigens with the subsequent initiation of an inflammatory response that contributes to IIM. Using an adoptive transfer mouse model of IIM, we show that sarcolemmal repair is significantly compromised in distal skeletal muscle in the absence of inflammation. We identified autoantibodies against TRIM72 (also known as MG53), a muscle-enriched membrane repair protein, in IIM patient sera and in our mouse model of IIM by ELISA. We found that patient sera with elevated levels of TRIM72 autoantibodies suppress sarcolemmal resealing in healthy skeletal muscle, and depletion of TRIM72 antibodies from these same serum samples rescues sarcolemmal repair capacity. Autoantibodies targeting TRIM72 lead to skeletal muscle fibers with compromised membrane barrier function, providing a continuous source of autoantigens to promote autoimmunity and further amplifying humoral responses. These findings reveal a potential pathogenic mechanism that acts as a feedback loop contributing to the progression of IIM.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Proteínas de la Membrana/inmunología , Fibras Musculares Esqueléticas/inmunología , Miositis/inmunología , Sarcolema/inmunología , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/patología , Miositis/genética , Miositis/patología , Conejos , Sarcolema/genética , Sarcolema/patología
13.
PLoS One ; 15(4): e0231194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271817

RESUMEN

Various injuries to the neural tissues can cause irreversible damage to multiple functions of the nervous system ranging from motor control to cognitive function. The limited treatment options available for patients have led to extensive interest in studying the mechanisms of neuronal regeneration and recovery from injury. Since many neurons are terminally differentiated, by increasing cell survival following injury it may be possible to minimize the impact of these injuries and provide translational potential for treatment of neuronal diseases. While several cell types are known to survive injury through plasma membrane repair mechanisms, there has been little investigation of membrane repair in neurons and even fewer efforts to target membrane repair as a therapy in neurons. Studies from our laboratory group and others demonstrated that mitsugumin 53 (MG53), a muscle-enriched tripartite motif (TRIM) family protein also known as TRIM72, is an essential component of the cell membrane repair machinery in skeletal muscle. Interestingly, recombinant human MG53 (rhMG53) can be applied exogenously to increase membrane repair capacity both in vitro and in vivo. Increasing the membrane repair capacity of neurons could potentially minimize the death of these cells and affect the progression of various neuronal diseases. In this study we assess the therapeutic potential of rhMG53 to increase membrane repair in cultured neurons and in an in vivo mouse model of neurotrauma. We found that a robust repair response exists in various neuronal cells and that rhMG53 can increase neuronal membrane repair both in vitro and in vivo. These findings provide direct evidence of conserved membrane repair responses in neurons and that these repair mechanisms can be targeted as a potential therapeutic approach for neuronal injury.


Asunto(s)
Regeneración Nerviosa , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Cicatrización de Heridas , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Lesiones por Aplastamiento/patología , Lesiones por Aplastamiento/fisiopatología , Modelos Animales de Enfermedad , Humanos , Proteínas de la Membrana/metabolismo , Membranas , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteínas Recombinantes/farmacología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología , Proteínas de Motivos Tripartitos/farmacología , Cicatrización de Heridas/efectos de los fármacos
14.
Am J Physiol Cell Physiol ; 318(2): C253-C262, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747313

RESUMEN

Various previous studies established that the amphiphilic tri-block copolymer known as poloxamer 188 (P188) or Pluronic-F68 can stabilize the plasma membrane following a variety of injuries to multiple mammalian cell types. This characteristic led to proposals for the use of P188 as a therapeutic treatment for various disease states, including muscular dystrophy. Previous studies suggest that P188 increases plasma membrane integrity by resealing plasma membrane disruptions through its affinity for the hydrophobic lipid chains on the lipid bilayer. P188 is one of a large family of copolymers that share the same basic tri-block structure consisting of a middle hydrophobic propylene oxide segment flanked by two hydrophilic ethylene oxide moieties [poly(ethylene oxide)80-poly(propylene oxide)27-poly(ethylene oxide)80]. Despite the similarities of P188 to the other poloxamers in this chemical family, there has been little investigation into the membrane-resealing properties of these other poloxamers. In this study we assessed the resealing properties of poloxamers P181, P124, P182, P234, P108, P407, and P338 on human embryonic kidney 293 (HEK293) cells and isolated muscle from the mdx mouse model of Duchenne muscular dystrophy. Cell membrane injuries from glass bead wounding and multiphoton laser injury show that the majority of poloxamers in our panel improved the plasma membrane resealing of both HEK293 cells and dystrophic muscle fibers. These findings indicate that many tri-block copolymers share characteristics that can increase plasma membrane resealing and that identification of these shared characteristics could help guide design of future therapeutic approaches.


Asunto(s)
Membrana Celular/efectos de los fármacos , Músculos/efectos de los fármacos , Poloxámero/farmacología , Animales , Línea Celular , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/tratamiento farmacológico
15.
Cell Rep ; 28(6): 1612-1622.e4, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390573

RESUMEN

Cachexia is a wasting syndrome characterized by pronounced skeletal muscle loss. In cancer, cachexia is associated with increased morbidity and mortality and decreased treatment tolerance. Although advances have been made in understanding the mechanisms of cachexia, translating these advances to the clinic has been challenging. One reason for this shortcoming may be the current animal models, which fail to fully recapitulate the etiology of human cancer-induced tissue wasting. Because pancreatic ductal adenocarcinoma (PDA) presents with a high incidence of cachexia, we engineered a mouse model of PDA that we named KPP. KPP mice, similar to PDA patients, progressively lose skeletal and adipose mass as a consequence of their tumors. In addition, KPP muscles exhibit a similar gene ontology as cachectic patients. We envision that the KPP model will be a useful resource for advancing our mechanistic understanding and ability to treat cancer cachexia.


Asunto(s)
Caquexia/etiología , Modelos Animales de Enfermedad , Neoplasias Pancreáticas/complicaciones , Animales , Caquexia/genética , Caquexia/metabolismo , Progresión de la Enfermedad , Femenino , Ontología de Genes , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA-Seq , Transcriptoma , Neoplasias Pancreáticas
16.
Sci Rep ; 9(1): 10179, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308393

RESUMEN

Store-operated Ca2+ entry (SOCE), a major Ca2+ signaling mechanism in non-myocyte cells, has recently emerged as a component of Ca2+ signaling in cardiac myocytes. Though it has been reported to play a role in cardiac arrhythmias and to be upregulated in cardiac disease, little is known about the fundamental properties of cardiac SOCE, its structural underpinnings or effector targets. An even greater question is how SOCE interacts with canonical excitation-contraction coupling (ECC). We undertook a multiscale structural and functional investigation of SOCE in cardiac myocytes from healthy mice (wild type; WT) and from a genetic murine model of arrhythmic disease (catecholaminergic ventricular tachycardia; CPVT). Here we provide the first demonstration of local, transient Ca2+ entry (LoCE) events, which comprise cardiac SOCE. Although infrequent in WT myocytes, LoCEs occurred with greater frequency and amplitude in CPVT myocytes. CPVT myocytes also evidenced characteristic arrhythmogenic spontaneous Ca2+ waves under cholinergic stress, which were effectively prevented by SOCE inhibition. In a surprising finding, we report that both LoCEs and their underlying protein machinery are concentrated at the intercalated disk (ID). Therefore, localization of cardiac SOCE in the ID compartment has important implications for SOCE-mediated signaling, arrhythmogenesis and intercellular mechanical and electrical coupling in health and disease.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Acoplamiento Excitación-Contracción , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Proteína ORAI1/metabolismo , Retículo Sarcoplasmático/metabolismo , Molécula de Interacción Estromal 1/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 317(3): H640-H647, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31347914

RESUMEN

The force-frequency relationship (FFR) is an important regulatory mechanism that increases the force-generating capacity as well as the contraction and relaxation kinetics in human cardiac muscle as the heart rate increases. In human heart failure, the normally positive FFR often becomes flat, or even negative. The rate of cross-bridge cycling, which has been reported to affect cardiac output, could be potentially dysregulated and contribute to blunted or negative FFR in heart failure. We recently developed and herein use a novel method for measuring the rate of tension redevelopment. This method allows us to obtain an index of the rate of cross-bridge cycling in intact contracting cardiac trabeculae at physiological temperature and assess physiological properties of cardiac muscles while preserving posttranslational modifications representative of those that occur in vivo. We observed that trabeculae from failing human hearts indeed exhibit an impaired FFR and a reduced speed of relaxation kinetics. However, stimulation frequencies in the lower spectrum did not majorly affect cross-bridge cycling kinetics in nonfailing and failing trabeculae when assessed at maximal activation. Trabeculae from failing human hearts had slightly slower cross-bridge kinetics at 3 Hz as well as reduced capacity to generate force upon K+ contracture at this frequency. We conclude that cross-bridge kinetics at maximal activation in the prevailing in vivo heart rates are not majorly impacted by frequency and are not majorly impacted by disease.NEW & NOTEWORTHY In this study, we confirm that cardiac relaxation kinetics are impaired in filing human myocardium and that cross-bridge cycling rate at resting heart rates does not contribute to this impaired relaxation. At high heart rates, failing myocardium cross-bridge rates are slower than in nonfailing myocardium.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca , Puente Miocárdico/fisiopatología , Adulto , Anciano , Gasto Cardíaco , Femenino , Humanos , Técnicas In Vitro , Cinética , Masculino , Persona de Mediana Edad , Contracción Miocárdica , Disfunción Ventricular Izquierda/fisiopatología , Adulto Joven
18.
Hum Mol Genet ; 28(12): 2030-2045, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30759207

RESUMEN

Mineralocorticoid receptor (MR) drugs have been used clinically for decades to treat cardiovascular diseases. MR antagonists not only show preclinical efficacy for heart in Duchenne muscular dystrophy (DMD) models but also improve skeletal muscle force and muscle membrane integrity. The mechanisms of action of MR antagonists in skeletal muscles are entirely unknown. Since MR are present in many cell types in the muscle microenvironment, it is critical to define cell-intrinsic functions in each cell type to ultimately optimize antagonist efficacy for use in the widest variety of diseases. We generated a new conditional knockout of MR in myofibers and quantified cell-intrinsic mechanistic effects on functional and histological parameters in a DMD mouse model. Skeletal muscle MR deficiency led to improved respiratory muscle force generation and less deleterious fibrosis but did not reproduce MR antagonist efficacy on membrane susceptibility to induced damage. Surprisingly, acute application of MR antagonist to muscles led to improvements in membrane integrity after injury independent of myofiber MR. These data demonstrate that MR antagonists are efficacious to dystrophic skeletal muscles through both myofiber intrinsic effects on muscle force and downstream fibrosis and extrinsic functions on membrane stability. MR antagonists may therefore be applicable for treating more general muscle weakness and possibly other conditions that result from cell injuries.


Asunto(s)
Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Espironolactona/uso terapéutico
19.
Methods Mol Biol ; 1717: 145-153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29468590

RESUMEN

Ligation of the left anterior descending (LAD) coronary artery in the mouse heart is a widely used model to simulate myocardial infarction and ischemia-reperfusion injury. Here we describe a ligation technique routinely performed in our laboratory to induce myocardial infarction that may be used to study ischemia-reperfusion injury in the myocardium. The methods described enhance location of the LAD coronary artery to allow for accurate ligation, thus increasing reproducibility of infarct size and location.


Asunto(s)
Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
20.
J Cardiovasc Comput Tomogr ; 12(1): 74-80, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29242134

RESUMEN

BACKGROUND: Estimation of diffuse myocardial fibrosis, substrate for adverse events such as heart failure and arrhythmias in patients with various cardiac disorders, is presently done by histopathology or cardiac magnetic resonance. We sought to develop a non-contrast method to estimate the amount of diffuse myocardial fibrosis leveraging dual energy computed tomography (DECT) in phantoms and a suitable small animal model. METHODS AND RESULTS: Phantoms consisted of homogenized bovine myocardium with varying amounts of Type 1 collagen. Fifteen mice underwent sham surgery, no procedure, or transverse aortic constriction (TAC) for 5 or 8 weeks to produce moderate or severe fibrosis, respectively. Phantoms and ex vivo mouse hearts were imaged on a single source, DECT scanner equipped with kVp switching. Monochromatic images were reconstructed at 40-140 keV. Linear discriminant analysis (LDA) was performed on mean myocardial CT numbers derived from single energy (70 keV) images as well as images reconstructed across multiple energies. Classification of myocardial fibrosis severity as low, moderate or severe was more often correct using the multi-energy CT/LDA approach vs. single energy CT/LDA in both phantoms (80.0% vs. 70.0%) and mice (93.3% vs. 33.3%). CONCLUSIONS: DECT myocardial imaging with multi-energy analysis better classifies myocardial fibrosis severity compared to a single energy-based approach. Non-contrast DECT can accurately and non-invasively estimate the extent of diffuse myocardial fibrosis in phantom and animal models. These data support further evaluation of this approach for in vivo myocardial fibrosis estimation.


Asunto(s)
Cardiomiopatías/diagnóstico por imagen , Tomografía Computarizada Multidetector/instrumentación , Miocardio/patología , Fantasmas de Imagen , Animales , Cardiomiopatías/clasificación , Cardiomiopatías/patología , Bovinos , Modelos Animales de Enfermedad , Fibrosis , Ratones Endogámicos C57BL , Valor Predictivo de las Pruebas , Interpretación de Imagen Radiográfica Asistida por Computador , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...