Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 25(9): e202400106, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38469601

RESUMEN

Bioluminescence, the mesmerizing natural phenomenon where living organisms produce light through chemical reactions, has long captivated scientists and laypersons alike, offering a rich tapestry of insights into biological function, ecology, evolution as well as the underlying chemistry. This comprehensive introductory review systematically explores the phenomenon of bioluminescence, addressing its historical context, geographic dispersion, and ecological significance with a focus on their chemical mechanisms. Our examination begins with terrestrial bioluminescence, discussing organisms from different habitats. We analyze thefireflies of Central Europe's meadows and the fungi in the Atlantic rainforest of Brazil. Additionally, we inspect bioluminescent species in New Zealand, specifically river-dwelling snails and mosquito larvae found in Waitomo Caves. Our exploration concludes in the Siberian Steppes, highlighting the area's luminescent insects and annelids. Transitioning to the marine realm, the second part of this review examines marine bioluminescent organisms. We explore this phenomenon in deep-sea jellyfish and their role in the ecosystem. We then move to Toyama Bay, Japan, where seasonal bioluminescence of dinoflagellates and ostracods present a unique case study. We also delve into the bacterial world, discussing how bioluminescent bacteria contribute to symbiotic relationships. For each organism, we contextualize its bioluminescence, providing details about its discovery, ecological function, and geographical distribution. A special focus lies on the examination of the underlying chemical mechanisms that enables these biological light displays. Concluding this review, we present a series of practical bioluminescence and chemiluminescence experiments, providing a resource for educational demonstrations and student research projects. Our goal with this review is to provide a summary of bioluminescence across the diverse ecological contexts, contributing to the broader understanding of this unique biological phenomenon and its chemical mechanisms serving researchers new to the field, educators and students alike.


Asunto(s)
Luminiscencia , Animales , Mediciones Luminiscentes , Ecosistema
2.
Nano Lett ; 23(11): 4815-4821, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37256831

RESUMEN

Electrically controlled rotation of spins in a semiconducting channel is a prerequisite for the successful realization of many spintronic devices, like, e.g., the spin-field-effect transistor (sFET). To date, there have been only a few reports on electrically controlled spin precession in sFET-like devices. These devices operate in the ballistic regime, as postulated in the original sFET proposal, and hence need high SOC channel materials in practice. Here, we demonstrate gate-controlled precession of spins in a nonballistic sFET using an array of narrow diffusive wires as a channel between a spin source and a spin drain. Our study shows that spins traveling in a semiconducting channel can be coherently rotated on a distance far exceeding the electrons' mean free path, and spin-transistor functionality can be thus achieved in nonballistic channels with relatively low SOC, relaxing two major constraints of the original sFET proposal.

3.
Microbiol Spectr ; 10(5): e0106522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094086

RESUMEN

Light induces the production of ink-blue pentacyclic natural products, the corticin pigments, in the cobalt crust mushroom Terana caerulea. Here, we describe the genetic locus for corticin biosynthesis and provide evidence for a light-dependent dual transcriptional/cotranscriptional regulatory mechanism. Light selectively induces the expression of the corA gene encoding the gateway enzyme, the first described mushroom polyporic acid synthetase CorA, while other biosynthetic genes for modifying enzymes necessary to complete corticin assembly are induced only at lower levels. The strongest corA induction was observed following exposure to blue and UV light. A second layer of regulation is provided by the light-dependent splicing of the three introns in the pre-mRNA of corA. Our results provide insight into the fundamental organization of how mushrooms regulate natural product biosynthesis. IMPORTANCE The regulation of natural product biosyntheses in mushrooms in response to environmental cues is poorly understood. We addressed this knowledge gap and chose the cobalt crust mushroom Terana caerulea as our model. Our work discovered a dual-level regulatory mechanism that connects light as an abiotic stimulus with a physiological response, i.e., the production of dark-blue pigments. Exposure to blue light elicits strongly increased transcription of the gene encoding the gateway enzyme, the polyporic acid synthetase CorA, that catalyzes the formation of the pigment core structure. Additionally, light is a prerequisite for the full splicing of corA pre-mRNA and, thus, its proper maturation. Dual transcriptional/cotranscriptional light-dependent control of fungal natural product biosynthesis has previously been unknown. As it allows the tight control of a key metabolic step, it may be a much more prevalent mechanism among these organisms.


Asunto(s)
Agaricales , Productos Biológicos , Agaricales/genética , Agaricales/metabolismo , Precursores del ARN/genética , Cobalto/metabolismo , Ligasas
4.
Nat Commun ; 13(1): 2856, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606355

RESUMEN

Electrons exposed to a two-dimensional (2D) periodic potential and a uniform, perpendicular magnetic field exhibit a fractal, self-similar energy spectrum known as the Hofstadter butterfly. Recently, related high-temperature quantum oscillations (Brown-Zak oscillations) were discovered in graphene moiré systems, whose origin lies in the repetitive occurrence of extended minibands/magnetic Bloch states at rational fractions of magnetic flux per unit cell giving rise to an increase in band conductivity. In this work, we report on the experimental observation of band conductivity oscillations in an electrostatically defined and gate-tunable graphene superlattice, which are governed both by the internal structure of the Hofstadter butterfly (Brown-Zak oscillations) and by a commensurability relation between the cyclotron radius of electrons and the superlattice period (Weiss oscillations). We obtain a complete, unified description of band conductivity oscillations in two-dimensional superlattices, yielding a detailed match between theory and experiment.

5.
Nano Lett ; 20(12): 8493-8499, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33174423

RESUMEN

BiSbTeSe2 is a 3D topological insulator (3D-TI) with Dirac type surface states and low bulk carrier density, as donors and acceptors compensate each other. Dominating low-temperature surface transport in this material is heralded by Shubnikov-de Haas oscillations and the quantum Hall effect. Here, we experimentally probe and model the electronic density of states (DOS) in thin layers of BiSbTeSe2 by capacitance experiments both without and in quantizing magnetic fields. By probing the lowest Landau levels, we show that a large fraction of the electrons filled via field effect into the system ends up in (localized) bulk states and appears as a background DOS. The surprisingly strong temperature dependence of such background DOS can be traced back to Coulomb interactions. Our results point at the coexistence and intimate coupling of Dirac surface states with a bulk many-body phase (a Coulomb glass) in 3D-TIs.

6.
Nano Lett ; 20(11): 8046-8052, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33054236

RESUMEN

We report an efficient technique to induce gate-tunable two-dimensional superlattices in graphene by the combined action of a back gate and a few-layer graphene patterned bottom gate complementary to existing methods. The patterned gates in our approach can be easily fabricated and implemented in van der Waals stacking procedures, allowing flexible use of superlattices with arbitrary geometry. In transport measurements on a superlattice with a lattice constant a = 40 nm, well-pronounced satellite Dirac points and signatures of the Hofstadter butterfly including a nonmonotonic quantum Hall response are observed. Furthermore, the experimental results are accurately reproduced in transport simulations and show good agreement with features in the calculated band structure. Overall, we present a comprehensive picture of graphene-based superlattices, featuring a broad range of miniband effects, both in experiment and in theoretical modeling. The presented technique is suitable for studying more advanced geometries which are not accessible by other methods.

7.
Chemistry ; 25(36): 8630-8634, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31021432

RESUMEN

Longevity of complex organic devices critically depends on the supramolecular integrity of the constituting layers and interfaces. Because the latter are soft matter, they can structurally respond to perturbation of their supramolecular structure by relaxing back to a thermodynamically favorable state. To use this response for self-healing of optoelectronically active layers and particularly interfaces, the degraded dyes in these layers need to be exchanged with non-degraded ones. Here, we present a dye layer interfaced between a solid surface and a dye reservoir that autonomously self-heals after photo-degradation of single molecules to restore its optical function. Surface sensitive in situ photothermal deflection spectroscopy reveals that this supramolecular self-healing approach critically depends on the thermodynamic stability of the layer, the chemical change of the dye upon degradation, and the medium dissolving the degraded dye and providing the reservoir dyes. Hence, the interplay of these parameters is key to successfully using this supramolecular self-healing approach to thin layers and interfaces in organic device for increased sustainability of organic optoelectronics and related fields.

8.
Langmuir ; 35(7): 2587-2600, 2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30688466

RESUMEN

The supramolecular structure essentially determines the properties of organic thin films. In this work, we systematically investigate the influence of the chromophore on the supramolecular structure formation at air-water interfaces by means of the Langmuir-Blodgett technique. Therefore, we focus on the recently introduced class of double-anchor T-shaped amphiphilic dyes, namely, 4-hydroxy-thiazole chromophores that are centrally equipped with an amphiphilicity-inducing hexanoic acid. The thiazoles contain hydrophilic subphase-anchor groups in the 2-position (4- N, N-dimethylaminophenyl (Am), 2-pyridyl (Py), and 4-nitrophenyl (Ni)), whereas the chromophores are systematically extended in the 5-position with various substituents. The combination of the Langmuir technique with online fluorescence measurements revealed that the π-π interactions that are pronounced in the case of 4-methoxybiphenyl derivatives yield the most distinct supramolecular structures. Whereas in the case of Py and Ni derivatives ordered J-type supramolecular structures in microdomains are formed, the Am derivative forms ordered supramolecular structures that are more homogeneous, which are, however, not stabilized by J-type dipolar interactions. Because of the synergetic π-π and dipolar stabilizations, the Ni derivative bearing the 4-methoxybiphenyl unit forms exceptionally stable quasi-two-dimensional Langmuir monolayers reaching very high surface pressures beyond 60 mN/m without any sign of disturbance of the Langmuir monolayer.

9.
Phys Rev Lett ; 121(2): 026806, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30085762

RESUMEN

We report the experimental observation of commensurability oscillations (COs) in 1D graphene superlattices. The widely tunable periodic potential modulation in hBN-encapsulated graphene is generated via the interplay of nanopatterned few-layer graphene acting as a local bottom gate and a global Si back gate. The longitudinal magnetoresistance shows pronounced COs when the sample is tuned into the unipolar transport regime. We observe up to six CO minima, providing evidence for a long mean free path despite the potential modulation. Comparison to existing theories shows that small-angle scattering is dominant in hBN/graphene/hBN heterostructures. We observe robust COs persisting to temperatures exceeding T=150 K. At high temperatures, we find deviations from the predicted T dependence, which we ascribe to electron-electron scattering.

10.
Nat Commun ; 9(1): 584, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402972

RESUMEN

In the original version of this Article, the second and third sentences of the first paragraph of the "Gate voltage and antidot period dependencies" section of the Results originally incorrectly read "The characteristic evolution of the sheet resistance ρ□=ρ□ (B=0) with Vg shown for three antidot samples and an unpatterned reference sample in Fig. 3a. The maxima of ρxx, located between Vg~0.5 and 1 V, reflect the charge neutrality point (CNP), corresponding to an EF position located slightly in the valence band (see band structure in Fig. 3b)." In the corrected version, "[Formula: see text]" is replaced by "[Formula: see text]", and "The maxima of [Formula: see text]" is replaced by "The maxima of [Formula: see text]".

11.
Nat Commun ; 8(1): 2023, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222407

RESUMEN

Transport in topological matter has shown a variety of novel phenomena over the past decade. Although numerous transport studies have been conducted on three-dimensional topological insulators (TIs), study of ballistic motion and thus exploration of potential landscapes on a hundred nanometer scale is for the prevalent TI materials almost impossible due to their low carrier mobility. Therefore, it is unknown whether helical Dirac electrons in TIs, bound to interfaces between topologically distinct materials, can be manipulated on the nanometer scale by local gates or locally etched regions. Here we impose a submicron periodic potential onto a single surface of Dirac electrons in high-mobility strained mercury telluride (HgTe), which is a strong TI. Pronounced geometric resistance resonances constitute the clear-cut observation of a ballistic effect in three-dimensional TIs.

12.
ACS Appl Mater Interfaces ; 9(50): 44181-44191, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29185335

RESUMEN

The supramolecular structure essentially determines the properties of organic thin films. Therefore, it is of utmost importance to understand the influence of molecular structure modifications on supramolecular structure formation. In this article, we demonstrate how to tune molecular orientations of amphiphilic 4-hydroxy thiazole derivatives by means of the Langmuir-Blodgett (LB) technique and how this depends on the length of an alkylic spacer between the thiazole chromophore and the polar anchor group. Therefore, we characterize their corresponding supramolecular structures, thermodynamic, absorption, and fluorescence properties. Particularly, the polarization-dependence of the fluorescence is analyzed to deduce molecular orientations and their possible changes after annealing, i.e., to characterize the thermodynamic stability of the individual solid state phases. Because the investigated thiazoles are amphiphilic, the different solid state phases can be formed and be controlled by means of the Langmuir-Blodgett (LB) technique. This technique also allows to deduce atomistic supramolecular structure motives of the individual solid phases and to characterize their thermodynamic stabilities. Utilizing the LB technique, we demonstrate that subtle molecular changes, like the variation in spacer length, can yield entirely different solid state phases with distinct supramolecular structures and properties.

13.
J Biomed Sci ; 24(1): 78, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29037191

RESUMEN

BACKGROUND: Improving the neuronal yield from in vitro cultivated neural progenitor cells (NPCs) is an essential challenge in transplantation therapy in neurological disorders. In this regard, Ascorbic acid (AA) is widely used to expand neurogenesis from NPCs in cultures although the mechanisms of its action remain unclear. Neurogenesis from NPCs is regulated by the redox-sensitive WNT/ß-catenin signaling pathway. We therefore aimed to investigate how AA interacts with this pathway and potentiates neurogenesis. METHODS: Effects of 200 µM AA were compared with the pro-neurogenic reagent and WNT/ß-catenin signaling agonist lithium chloride (LiCl), and molecules with antioxidant activities i.e. N-acetyl-L-cysteine (NAC) and ruthenium red (RuR), in differentiating neural progenitor ReNcell VM cells. Cells were supplemented with reagents for two periods of treatment: a full period encompassing the whole differentiation process versus an early short period that is restricted to the cell fate commitment stage. Intracellular redox balance and reactive oxygen species (ROS) metabolism were examined by flow cytometry using redox and ROS sensors. Confocal microscopy was performed to assess cell viability, neuronal yield, and levels of two proteins: Nucleoredoxin (NXN) and the WNT/ß-catenin signaling component Dishevelled 2 (DVL2). TUBB3 and MYC gene responses were evaluated by quantitative real-time PCR. DVL2-NXN complex dissociation was measured by fluorescence resonance energy transfer (FRET). RESULTS: In contrast to NAC which predictably exhibited an antioxidant effect, AA treatment enhanced ROS metabolism with no cytotoxic induction. Both drugs altered ROS levels only at the early stage of the differentiation as no changes were held beyond the neuronal fate commitment stage. FRET studies showed that AA treatment accelerated the redox-dependent release of the initial pool of DVL2 from its sequestration by NXN, while RuR treatment hampered the dissociation of the two proteins. Accordingly, AA increased WNT/ß-catenin signaling output i.e. MYC mRNA level, whereas RuR attenuated it. Moreover, AA improved neurogenesis as much as LiCl as both TUBB3-positive cell yield and TUBB3 mRNA level increased, while NAC or RuR attenuated neurogenesis. Markedly, the neurogenesis outputs between the short and the full treatment with either NAC or AA were found unchanged, supporting our model that neuronal yield is altered by events taking place at the early phase of differentiation. CONCLUSIONS: Our findings demonstrate that AA treatment elevates ROS metabolism in a non-lethal manner prior to the NPCs commitment to their neuronal fate. Such effect stimulates the redox-sensitive DVL2 activation and WNT/ß-catenin signaling response that would enhance the ensuing neuronal cell differentiation.


Asunto(s)
Ácido Ascórbico/metabolismo , Diferenciación Celular , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vía de Señalización Wnt , Humanos , Células-Madre Neurales/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Chem Commun (Camb) ; 53(73): 10220-10223, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28861560

RESUMEN

Here we propose the combination of the 4-alkoxythiazole donor motif with highly photostable tetraazaanthracenes as electron-acceptor units. The segregated frontier orbitals in these dyes afford optical band gaps of 1.4-1.1 eV. Cyclic voltammetry confirmed the very low-lying LUMO levels that are attributed to the highly electron-deficient tetraazaanthracene moiety.

15.
Phys Chem Chem Phys ; 19(34): 22852-22859, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28812068

RESUMEN

2-Coumaranones are evolving as a new, efficient, versatile, and synthetically accessible platform for the next generation chemiluminescent probes. Despite the favorable quantum yields, the exact mechanism of their chemiluminescence remains elusive. Here, we analyze the details of the mechanism of the 2-coumaranone chemiluminescence using a combination of experimental and computational methods. By using EPR spectroscopy we show that superoxide radical anions are involved in the reactions, in support of the hypothesis that the mechanism includes a single electron transfer step. The decomposition of the high-energy intermediate, 1,2-dioxetanone, is described in the ground state and in the first three excited singlet states, and indicates that there is at least one conical intersection, which is crucial for generation of excited-state molecules. A peroxy anion that is generated was found to be able to undergo a side reaction that leads to the same (isolated) product as in the light-generating reaction. These results demonstrate the applicability of 2-coumaranones as a model system for several bioluminescence reactions and may lead to the design of new 2-coumaranone derivatives with superior emission characteristics for bioanalytical applications.

16.
Int J Dev Neurosci ; 48: 9-17, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26562178

RESUMEN

BCL-2 is a multifunctional protein involved in the regulation of apoptosis, cell cycle progression and neural developmental processes. Its function in the latter process is not well understood and needs further elucidation. Therefore, we characterized the protein expression kinetics of BCL-2 and associated regulatory proteins of the intrinsic apoptosis pathway during the process of neuronal differentiation in ReNcell VM cells with and without functional inhibition of BCL-2 by its competitive ligand HA14-1. Inhibition of BCL-2 caused a diminished BCL-2 expression and higher levels of cleaved BAX, activated Caspase-3 and cleaved PARP, all pro-apoptotic markers, when compared with untreated differentiating cells. In parallel, flow cytometric analysis of HA14-1-treated cells revealed a delayed differentiation into HuC/D+ neuronal cells when compared to untreated differentiating cells. In conclusion, BCL-2 possess a protective function in fully differentiated ReNcell VM cells. We propose that the pro-survival signaling of BCL-2 is closely connected with its stimulatory effects on neurogenesis of human neural progenitor cells.


Asunto(s)
Apoptosis/fisiología , Diferenciación Celular/fisiología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis/efectos de los fármacos , Benzopiranos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Transformada , Proteína 3 Similar a ELAV/metabolismo , Proteína 4 Similar a ELAV/metabolismo , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Membranas Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Nitrilos/farmacología , Factores de Tiempo , Proteína X Asociada a bcl-2/metabolismo
17.
Nano Lett ; 15(12): 8402-6, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26598218

RESUMEN

The bulk carrier mobility in graphene was shown to be enhanced in graphene-boron nitride heterostructures. However, nanopatterning graphene can add extra damage and drastically degrade the intrinsic properties by edge disorder. Here we show that graphene embedded into a heterostructure with hexagonal boron nitride (hBN) on both sides is protected during a nanopatterning step. In this way, we can prepare graphene-based antidot lattices where the high mobility is preserved. We report magnetotransport experiments in those antidot lattices with lattice periods down to 50 nm. We observe pronounced commensurability features stemming from ballistic orbits around one or several antidots. Due to the short lattice period in our samples, we can also explore the boundary between the classical and the quantum transport regime, as the Fermi wavelength of the electrons approaches the smallest length scale of the artificial potential.

18.
Opt Express ; 23(22): 28728-35, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561141

RESUMEN

Graphene has unique optical and electronic properties that make it attractive as an active material for broadband ultrafast detection. We present here a graphene-based detector that shows 40-picosecond electrical rise time over a spectral range that spans nearly three orders of magnitude, from the visible to the far-infrared. The detector employs a large area graphene active region with interdigitated electrodes that are connected to a log-periodic antenna to improve the long-wavelength collection efficiency, and a silicon carbide substrate that is transparent throughout the visible regime. The detector exhibits a noise-equivalent power of approximately 100 µW·Hz(-½) and is characterized at wavelengths from 780 nm to 500 µm.

19.
Photochem Photobiol Sci ; 14(11): 2097-107, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26415595

RESUMEN

A series of four donor aryl alkynyl substituted thiazole derivatives 3a-d and three similar aryl donor-acceptor systems 6a-c have been synthesized. All compounds bear different electron-donating groups in the 5-position of the thiazole core. The influence of both electron donor strength and the additional phenylethynyl unit on photophysical properties, i.e. UV/Vis absorption, fluorescence emission and fluorescence lifetime, has been evaluated. Additionally, theoretical calculations have been performed at the CAM-B3LYP/6-31+G(d,p) level and good agreement with the experimental data has been achieved. The new derivatives synthesized via palladium catalyzed cross coupling are characterised by moderately strong emission between 474 and 538 nm (ΦF = 0.35-0.39) and Stokes' shifts ranging from 0.54 to 0.79 eV (4392-6351 cm(-1)). The smaller chromophores of type 6 exhibit modest to high fluorescence emission (ΦF = 0.45-0.76) between 470 and 529 nm and their Stokes' shifts range from 0.59 to 0.65 eV (4765-5251 cm(-1)).


Asunto(s)
Alquinos/química , Tiazoles/química , Electrones , Estructura Molecular , Teoría Cuántica
20.
Toxicol In Vitro ; 30(1 Pt A): 138-65, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26026931

RESUMEN

The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation.


Asunto(s)
Metabolómica , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neurotoxinas/toxicidad , Proteómica , Animales , Barrera Hematoencefálica , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos , Síndromes de Neurotoxicidad/diagnóstico , Neurotoxinas/administración & dosificación , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...