Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 851
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38737375

RESUMEN

Released mitochondrial DNA (mtDNA) in cells activates cGAS-STING pathway, which induces expression of interferon-stimulated genes (ISGs) and thereby promotes inflammation, as frequently seen in asthmatic airways. However, whether the genetic determinant, Gasdermin B (GSDMB), the most replicated asthma risk gene, regulates this pathway remains unknown. We set out to determine whether and how GSDMB regulates mtDNA-activated cGAS-STING pathway and subsequent ISGs induction in human airway epithelial cells. Using qPCR, ELISA, native polyacrylamide gel electrophoresis, co-immunoprecipitation and immunofluorescence assays, we evaluated the regulation of GSDMB on cGAS-STING pathway in both BEAS-2B cells and primary normal human bronchial epithelial cells (nHBEs). mtDNA was extracted in plasma samples from human asthmatics and the correlation between mtDNA levels and eosinophil counts was analyzed. GSDMB is significantly associated with RANTES expression in asthmatic nasal epithelial brushing samples from the Genes-environments and Admixture in Latino Americans (GALA) II study. Over-expression of GSDMB promotes DNA-induced IFN and ISGs expression in bronchial epithelial BEAS-2B cells and nHBEs. Conversely, knockout of GSDMB led to weakened induction of interferon (IFNs) and ISGs in BEAS-2B cells. Mechanistically, GSDMB interacts with the C-terminus of STING, promoting the translocation of STING to Golgi, leading to the phosphorylation of IRF3 and induction of IFNs and ISGs. mtDNA copy number in serum from asthmatics was significantly correlated with blood eosinophil counts especially in male subjects. GSDMB promotes the activation of mtDNA and poly (dA:dT)-induced activation of cGAS-STING pathway in airway epithelial cells, leading to enhanced induction of ISGs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38738953

RESUMEN

OBJECTIVES: Acute brain dysfunction (ABD) in pediatric sepsis has a prevalence of 20%, but can be difficult to identify. Our previously validated ABD computational phenotype (CPABD) used variables obtained from the electronic health record indicative of clinician concern for acute neurologic or behavioral change. We tested whether the CPABD has better diagnostic performance to identify confirmed ABD than other definitions using the Glasgow Coma Scale or delirium scores. DESIGN: Diagnostic testing in a curated cohort of pediatric sepsis/septic shock patients. SETTING: Quaternary freestanding children's hospital. SUBJECTS: The test dataset comprised 527 children with sepsis/septic shock managed between 2011 and 2021 with a prevalence (pretest probability) of confirmed ABD of 30% (159/527). MEASUREMENTS AND MAIN RESULTS: CPABD was based on use of neuroimaging, electroencephalogram, and/or administration of new antipsychotic medication. We compared the performance of the CPABD with three GCS/delirium-based definitions of ABD-Proulx et al, International Pediatric Sepsis Consensus Conference, and Pediatric Organ Dysfunction Information Update Mandate. The posttest probability of identifying ABD was highest in CPABD (0.84) compared with other definitions. CPABD also had the highest sensitivity (83%; 95% CI, 76-89%) and specificity (93%; 95% CI, 90-96%). The false discovery rate was lowest in CPABD (1-in-6) as was the false omission rate (1-in-14). Finally, the prevalence threshold for the definitions varied, with the CPABD being the definition closest to 20%. CONCLUSIONS: In our curated dataset of pediatric sepsis/septic shock, CPABD had favorable characteristics to identify confirmed ABD compared with GCS/delirium-based definitions. The CPABD can be used to further study the impact of ABD in studies using large electronic health datasets.

3.
COPD ; 21(1): 2321379, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38655897

RESUMEN

INTRODUCTION: Spirometry is the gold standard for COPD diagnosis and severity determination, but is technique-dependent, nonspecific, and requires administration by a trained healthcare professional. There is a need for a fast, reliable, and precise alternative diagnostic test. This study's aim was to use interpretable machine learning to diagnose COPD and assess severity using 75-second carbon dioxide (CO2) breath records captured with TidalSense's N-TidalTM capnometer. METHOD: For COPD diagnosis, machine learning algorithms were trained and evaluated on 294 COPD (including GOLD stages 1-4) and 705 non-COPD participants. A logistic regression model was also trained to distinguish GOLD 1 from GOLD 4 COPD with the output probability used as an index of severity. RESULTS: The best diagnostic model achieved an AUROC of 0.890, sensitivity of 0.771, specificity of 0.850 and positive predictive value (PPV) of 0.834. Evaluating performance on all test capnograms that were confidently ruled in or out yielded PPV of 0.930 and NPV of 0.890. The severity determination model yielded an AUROC of 0.980, sensitivity of 0.958, specificity of 0.961 and PPV of 0.958 in distinguishing GOLD 1 from GOLD 4. Output probabilities from the severity determination model produced a correlation of 0.71 with percentage predicted FEV1. CONCLUSION: The N-TidalTM device could be used alongside interpretable machine learning as an accurate, point-of-care diagnostic test for COPD, particularly in primary care as a rapid rule-in or rule-out test. N-TidalTM also could be effective in monitoring disease progression, providing a possible alternative to spirometry for disease monitoring.


Asunto(s)
Capnografía , Aprendizaje Automático , Enfermedad Pulmonar Obstructiva Crónica , Índice de Severidad de la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Humanos , Persona de Mediana Edad , Masculino , Femenino , Capnografía/métodos , Anciano , Modelos Logísticos , Sensibilidad y Especificidad , Volumen Espiratorio Forzado , Algoritmos , Valor Predictivo de las Pruebas , Área Bajo la Curva , Estudios de Casos y Controles , Espirometría/instrumentación
4.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567749

RESUMEN

Vitamin D possesses immunomodulatory functions and vitamin D deficiency has been associated with the rise in chronic inflammatory diseases, including asthma (Litonjua and Weiss, 2007). Vitamin D supplementation studies do not provide insight into the molecular genetic mechanisms of vitamin D-mediated immunoregulation. Here, we provide evidence for vitamin D regulation of two human chromosomal loci, Chr17q12-21.1 and Chr17q21.2, reliably associated with autoimmune and chronic inflammatory diseases. We demonstrate increased vitamin D receptor (Vdr) expression in mouse lung CD4+ Th2 cells, differential expression of Chr17q12-21.1 and Chr17q21.2 genes in Th2 cells based on vitamin D status and identify the IL-2/Stat5 pathway as a target of vitamin D signaling. Vitamin D deficiency caused severe lung inflammation after allergen challenge in mice that was prevented by long-term prenatal vitamin D supplementation. Mechanistically, vitamin D induced the expression of the Ikzf3-encoded protein Aiolos to suppress IL-2 signaling and ameliorate cytokine production in Th2 cells. These translational findings demonstrate mechanisms for the immune protective effect of vitamin D in allergic lung inflammation with a strong molecular genetic link to the regulation of both Chr17q12-21.1 and Chr17q21.2 genes and suggest further functional studies and interventional strategies for long-term prevention of asthma and other autoimmune disorders.


Asunto(s)
Asma , Neumonía , Deficiencia de Vitamina D , Ratones , Animales , Humanos , Vitamina D/farmacología , Interleucina-2 , Inflamación , Células Th2 , Deficiencia de Vitamina D/metabolismo , Vitaminas
5.
J Pers Med ; 14(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38540988

RESUMEN

BACKGROUND: Although inhaled corticosteroids (ICS) are the first-line therapy for patients with persistent asthma, many patients continue to have exacerbations. We developed machine learning models to predict the ICS response in patients with asthma. METHODS: The subjects included asthma patients of European ancestry (n = 1371; 448 children; 916 adults). A genome-wide association study was performed to identify the SNPs associated with ICS response. Using the SNPs identified, two machine learning models were developed to predict ICS response: (1) least absolute shrinkage and selection operator (LASSO) regression and (2) random forest. RESULTS: The LASSO regression model achieved an AUC of 0.71 (95% CI 0.67-0.76; sensitivity: 0.57; specificity: 0.75) in an independent test cohort, and the random forest model achieved an AUC of 0.74 (95% CI 0.70-0.78; sensitivity: 0.70; specificity: 0.68). The genes contributing to the prediction of ICS response included those associated with ICS responses in asthma (TPSAB1, FBXL16), asthma symptoms and severity (ABCA7, CNN2, PTRN3, and BSG/CD147), airway remodeling (ELANE, FSTL3), mucin production (GAL3ST), leukotriene synthesis (GPX4), allergic asthma (ZFPM1, SBNO2), and others. CONCLUSIONS: An accurate risk prediction of ICS response can be obtained using machine learning methods, with the potential to inform personalized treatment decisions. Further studies are needed to examine if the integration of richer phenotype data could improve risk prediction.

6.
Respir Res ; 25(1): 118, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459594

RESUMEN

BACKGROUND: Vitamin D may help to alleviate asthma exacerbation because of its anti-inflammation effect, but the evidence is inconsistent in childhood asthma. MiRNAs are important mediators in asthma pathogenesis and also excellent non-invasive biomarkers. We hypothesized that circulating miRNAs are associated with asthma exacerbation and modified by vitamin D levels. METHODS: We sequenced baseline serum miRNAs from 461 participants in the Childhood Asthma Management Program (CAMP). Logistic regression was used to associate miRNA expression with asthma exacerbation through interaction analysis first and then stratified by vitamin D insufficient and sufficient groups. Microarray from lymphoblastoid B-cells (LCLs) treated by vitamin D or sham of 43 subjects in CAMP were used for validation in vitro. The function of miRNAs was associated with gene modules by weighted gene co-expression network analysis (WGCNA). RESULTS: We identified eleven miRNAs associated with asthma exacerbation with vitamin D effect modification. Of which, five were significant in vitamin D insufficient group and nine were significant in vitamin D sufficient group. Six miRNAs, including hsa-miR-143-3p, hsa-miR-192-5p, hsa-miR-151a-5p, hsa-miR-24-3p, hsa-miR-22-3p and hsa-miR-451a were significantly associated with gene modules of immune-related functions, implying miRNAs may mediate vitamin D effect on asthma exacerbation through immune pathways. In addition, hsa-miR-143-3p and hsa-miR-451a are potential predictors of childhood asthma exacerbation at different vitamin D levels. CONCLUSIONS: miRNAs are potential mediators of asthma exacerbation and their effects are directly impacted by vitamin D levels.


Asunto(s)
Asma , MicroARN Circulante , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARN Circulante/genética , Perfilación de la Expresión Génica , Asma/diagnóstico , Asma/genética , Vitamina D
7.
Eur Respir J ; 63(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514093

RESUMEN

RATIONALE: Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES: To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS: In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS: GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS: GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Asma , Gasderminas , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Humanos , Asma/metabolismo , Asma/genética , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Predisposición Genética a la Enfermedad , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/genética , Células Epiteliales/metabolismo , Línea Celular , Bronquios/metabolismo , Bronquios/patología , Neumonía/metabolismo , Neumonía/genética , Neumonía/virología , Femenino , Pulmón/metabolismo , Pulmón/patología
8.
EBioMedicine ; 102: 105025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458111

RESUMEN

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Asunto(s)
Asma , MicroARNs , Niño , Humanos , Estudios Transversales , Pulmón/metabolismo , MicroARNs/metabolismo , Metabolómica
9.
Crit Care Explor ; 6(1): e1027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234587

RESUMEN

OBJECTIVES: Post-ICU admission cumulative positive fluid balance (PFB) is associated with increased mortality among critically ill patients. We sought to test whether this risk varied across biomarker-based risk strata upon adjusting for illness severity, presence of severe acute kidney injury (acute kidney injury), and use of continuous renal replacement therapy (CRRT) in pediatric septic shock. DESIGN: Ongoing multicenter prospective observational cohort. SETTING: Thirteen PICUs in the United States (2003-2023). PATIENTS: Six hundred and eighty-one children with septic shock. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Cumulative percent PFB between days 1 and 7 (days 1-7 %PFB) was determined. Primary outcome of interest was complicated course defined as death or persistence of greater than or equal to two organ dysfunctions by day 7. Pediatric Sepsis Biomarker Risk Model (PERSEVERE)-II biomarkers were used to assign mortality probability and categorize patients into high mortality (n = 91), intermediate mortality (n = 134), and low mortality (n = 456) risk strata. Cox proportional hazard regression models with adjustment for PERSEVERE-II mortality probability, presence of sepsis-associated acute kidney injury on day 3, and use of CRRT, demonstrated that time-dependent variable days 1-7%PFB was independently associated with an increased hazard of complicated course. Risk-stratified analyses revealed that each 10% increase in days 1-7 %PFB was associated with increased hazard of complicated course only among patients with high mortality risk strata (adjusted hazard ratio 1.24 (95% CI, 1.08-1.43), p = 0.003). However, this association was not causally mediated by PERSEVERE-II biomarkers. CONCLUSIONS: Our data demonstrate the influence of cumulative %PFB on the risk of complicated course in pediatric septic shock. Contrary to our previous report, this risk was largely driven by patients categorized as having a high mortality risk based on PERSEVERE-II biomarkers. Incorporation of such prognostic enrichment tools in randomized trials of restrictive fluid management or early initiation of de-escalation strategies may inform targeted application of such interventions among at-risk patients.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38244724

RESUMEN

BACKGROUND: Asthmatic symptoms often start during early childhood. Impulse oscillometry (IOS) is feasible in preschool children who may be unable to reliably perform spirometry measurements. OBJECTIVE: We sought to evaluate the use of IOS in a multicenter, multiethnic high-risk asthma cohort titled the Vitamin D Antenatal Asthma Reduction Trial. METHODS: The trial recruited pregnant women whose children were followed from birth to age 8 years. Lung function was assessed with IOS at ages 4, 5, and 6 years and spirometry at ages 5, 6, 7, and 8 years. Asthma status, respiratory symptoms, and medication use were assessed with repeated questionnaires from birth to age 8 years. RESULTS: In total, 220 children were included in this secondary analysis. Recent respiratory symptoms and short-acting ß2-agonist use were associated with increased respiratory resistance at 5 Hz at age 4 years (ß = 2.6; 95% CI, 1.0 to 4.4; P = .002 and ß = 3.4; 95% CI, 0.7 to 6.2; P = .015, respectively). Increased respiratory resistance at 5 Hz at age 4 years was also associated with decreased lung function from ages 5 to 8 years (ß = -0.3; 95% CI, -0.5 to -0.1; P < .001 for FEV1 at 8 years) and active asthma at age 8 years (ß = 2.0; 95% CI, 0.2 to 3.8; P = .029). CONCLUSIONS: Increased respiratory resistance in preschool IOS is associated with frequent respiratory symptoms as well as school-age asthma and lung function impairment. Our findings suggest that IOS may serve as a potential objective measure for early identification of children who are at high risk of respiratory morbidity.

11.
Metabolomics ; 20(1): 16, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267770

RESUMEN

INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.


Asunto(s)
Lisina , Metabolómica , Niño , Femenino , Embarazo , Humanos , Preescolar , Índice de Masa Corporal , Reproducibilidad de los Resultados , Modelos Lineales
12.
Allergy ; 79(5): 1195-1207, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38164813

RESUMEN

BACKGROUND: Lung function is an independent predictor of mortality. We evaluated the lung function trajectories of a cohort of patients with asthma receiving biologic therapy. METHODS: We identified 229 monoclonal antibody-naïve adult patients with moderate-to-severe asthma who initiated omalizumab, mepolizumab, or dupilumab between 2010 and 2022 in a large healthcare system in Boston, MA. Generalized additive mixed models were used to estimate the lung function trajectories during the 156 weeks following biologic initiation. Response was defined as an improvement in FEV1 or a decrease of ≤0.5% per year. The Kaplan-Meier estimator was used to assess time to no additional improvement in FEV1 in responders. All models were adjusted for age, sex, body mass index, smoking status, baseline exacerbation rate, and baseline blood eosinophil count. RESULTS: Eighty-eight patients initiated mepolizumab, 76 omalizumab, and 65 dupilumab. Baseline eosinophil count was highest in the mepolizumab group (405 cells/mcL) and lowest for omalizumab (250 cells/mcL). Both FEV1 and FVC improved in the mepolizumab group (FEV1 + 20 mL/year; FVC +43 mL/year). For omalizumab, there was an initial improvement in the first year followed by decline with an overall FEV1 loss of -44 mL/year and FVC -32 mL/year. For dupilumab, both FEV1 (+61 mL/year) and FVC (+74 mL/year) improved over time. Fifty percent of the mepolizumab group, 58% omalizumab, and 72% of dupilumab were responders. The median time to no additional FEV1 improvement in responders was 24 weeks for omalizumab, 48 weeks for mepolizumab, and 57 weeks for dupilumab. CONCLUSION: In this clinical cohort, mepolizumab, omalizumab, and dupilumab had beneficial effects on FEV1 and FVC with distinct post-initiation trajectories.


Asunto(s)
Antiasmáticos , Anticuerpos Monoclonales Humanizados , Asma , Omalizumab , Pruebas de Función Respiratoria , Humanos , Asma/tratamiento farmacológico , Asma/fisiopatología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Masculino , Femenino , Omalizumab/uso terapéutico , Persona de Mediana Edad , Antiasmáticos/uso terapéutico , Adulto , Resultado del Tratamiento , Índice de Severidad de la Enfermedad , Pulmón/fisiopatología , Pulmón/efectos de los fármacos , Estudios de Cohortes , Anciano
13.
JAMA ; 331(8): 665-674, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38245889

RESUMEN

Importance: Sepsis is a leading cause of death among children worldwide. Current pediatric-specific criteria for sepsis were published in 2005 based on expert opinion. In 2016, the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) defined sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection, but it excluded children. Objective: To update and evaluate criteria for sepsis and septic shock in children. Evidence Review: The Society of Critical Care Medicine (SCCM) convened a task force of 35 pediatric experts in critical care, emergency medicine, infectious diseases, general pediatrics, nursing, public health, and neonatology from 6 continents. Using evidence from an international survey, systematic review and meta-analysis, and a new organ dysfunction score developed based on more than 3 million electronic health record encounters from 10 sites on 4 continents, a modified Delphi consensus process was employed to develop criteria. Findings: Based on survey data, most pediatric clinicians used sepsis to refer to infection with life-threatening organ dysfunction, which differed from prior pediatric sepsis criteria that used systemic inflammatory response syndrome (SIRS) criteria, which have poor predictive properties, and included the redundant term, severe sepsis. The SCCM task force recommends that sepsis in children be identified by a Phoenix Sepsis Score of at least 2 points in children with suspected infection, which indicates potentially life-threatening dysfunction of the respiratory, cardiovascular, coagulation, and/or neurological systems. Children with a Phoenix Sepsis Score of at least 2 points had in-hospital mortality of 7.1% in higher-resource settings and 28.5% in lower-resource settings, more than 8 times that of children with suspected infection not meeting these criteria. Mortality was higher in children who had organ dysfunction in at least 1 of 4-respiratory, cardiovascular, coagulation, and/or neurological-organ systems that was not the primary site of infection. Septic shock was defined as children with sepsis who had cardiovascular dysfunction, indicated by at least 1 cardiovascular point in the Phoenix Sepsis Score, which included severe hypotension for age, blood lactate exceeding 5 mmol/L, or need for vasoactive medication. Children with septic shock had an in-hospital mortality rate of 10.8% and 33.5% in higher- and lower-resource settings, respectively. Conclusions and Relevance: The Phoenix sepsis criteria for sepsis and septic shock in children were derived and validated by the international SCCM Pediatric Sepsis Definition Task Force using a large international database and survey, systematic review and meta-analysis, and modified Delphi consensus approach. A Phoenix Sepsis Score of at least 2 identified potentially life-threatening organ dysfunction in children younger than 18 years with infection, and its use has the potential to improve clinical care, epidemiological assessment, and research in pediatric sepsis and septic shock around the world.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Niño , Choque Séptico/mortalidad , Insuficiencia Multiorgánica/diagnóstico , Insuficiencia Multiorgánica/etiología , Consenso , Sepsis/mortalidad , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Puntuaciones en la Disfunción de Órganos
14.
JAMA ; 331(8): 675-686, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38245897

RESUMEN

Importance: The Society of Critical Care Medicine Pediatric Sepsis Definition Task Force sought to develop and validate new clinical criteria for pediatric sepsis and septic shock using measures of organ dysfunction through a data-driven approach. Objective: To derive and validate novel criteria for pediatric sepsis and septic shock across differently resourced settings. Design, Setting, and Participants: Multicenter, international, retrospective cohort study in 10 health systems in the US, Colombia, Bangladesh, China, and Kenya, 3 of which were used as external validation sites. Data were collected from emergency and inpatient encounters for children (aged <18 years) from 2010 to 2019: 3 049 699 in the development (including derivation and internal validation) set and 581 317 in the external validation set. Exposure: Stacked regression models to predict mortality in children with suspected infection were derived and validated using the best-performing organ dysfunction subscores from 8 existing scores. The final model was then translated into an integer-based score used to establish binary criteria for sepsis and septic shock. Main Outcomes and Measures: The primary outcome for all analyses was in-hospital mortality. Model- and integer-based score performance measures included the area under the precision recall curve (AUPRC; primary) and area under the receiver operating characteristic curve (AUROC; secondary). For binary criteria, primary performance measures were positive predictive value and sensitivity. Results: Among the 172 984 children with suspected infection in the first 24 hours (development set; 1.2% mortality), a 4-organ-system model performed best. The integer version of that model, the Phoenix Sepsis Score, had AUPRCs of 0.23 to 0.38 (95% CI range, 0.20-0.39) and AUROCs of 0.71 to 0.92 (95% CI range, 0.70-0.92) to predict mortality in the validation sets. Using a Phoenix Sepsis Score of 2 points or higher in children with suspected infection as criteria for sepsis and sepsis plus 1 or more cardiovascular point as criteria for septic shock resulted in a higher positive predictive value and higher or similar sensitivity compared with the 2005 International Pediatric Sepsis Consensus Conference (IPSCC) criteria across differently resourced settings. Conclusions and Relevance: The novel Phoenix sepsis criteria, which were derived and validated using data from higher- and lower-resource settings, had improved performance for the diagnosis of pediatric sepsis and septic shock compared with the existing IPSCC criteria.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Niño , Choque Séptico/mortalidad , Insuficiencia Multiorgánica , Estudios Retrospectivos , Puntuaciones en la Disfunción de Órganos , Sepsis/complicaciones , Mortalidad Hospitalaria
15.
medRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260473

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Traditional subtyping methods generally focus on either the clinical manifestations or the molecular endotypes of the disease, resulting in classifications that do not fully capture the disease's complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical and gene expression data with variational autoencoders. We apply this methodology to the COPDGene study, a large study of current and former smoking individuals with and without COPD. Our approach generates a set of vector embeddings, called Personalized Integrated Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or better than other embedding approaches. Using trajectory learning approaches, we analyze the main trajectories of variation in the PIP space and identify five well-separated subtypes with distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes are more robust to data resampling compared to those identified using traditional clustering approaches. Overall, our findings provide new avenues to establish fine-grained associations between the clinical characteristics, molecular processes, and disease outcomes of COPD.

16.
BMC Bioinformatics ; 25(1): 43, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273228

RESUMEN

The computation of a similarity measure for genomic data is a standard tool in computational genetics. The principal components of such matrices are routinely used to correct for biases due to confounding by population stratification, for instance in linear regressions. However, the calculation of both a similarity matrix and its singular value decomposition (SVD) are computationally intensive. The contribution of this article is threefold. First, we demonstrate that the calculation of three matrices (called the covariance matrix, the weighted Jaccard matrix, and the genomic relationship matrix) can be reformulated in a unified way which allows for the application of a randomized SVD algorithm, which is faster than the traditional computation. The fast SVD algorithm we present is adapted from an existing randomized SVD algorithm and ensures that all computations are carried out in sparse matrix algebra. The algorithm only assumes that row-wise and column-wise subtraction and multiplication of a vector with a sparse matrix is available, an operation that is efficiently implemented in common sparse matrix packages. An exception is the so-called Jaccard matrix, which does not have a structure applicable for the fast SVD algorithm. Second, an approximate Jaccard matrix is introduced to which the fast SVD computation is applicable. Third, we establish guaranteed theoretical bounds on the accuracy (in [Formula: see text] norm and angle) between the principal components of the Jaccard matrix and the ones of our proposed approximation, thus putting the proposed Jaccard approximation on a solid mathematical foundation, and derive the theoretical runtime of our algorithm. We illustrate that the approximation error is low in practice and empirically verify the theoretical runtime scalings on both simulated data and data of the 1000 Genome Project.


Asunto(s)
Genoma , Genómica , Algoritmos , Modelos Lineales
17.
BMJ Open ; 14(1): e077471, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216206

RESUMEN

INTRODUCTION: Sepsis affects 25.2 million children per year globally and causes 3.4 million deaths, with an annual cost of hospitalisation in the USA of US$7.3 billion. Despite being common, severe and expensive, therapies and outcomes from sepsis have not substantially changed in decades. Variable case definitions, lack of a reference standard for diagnosis and broad spectrum of disease hamper efforts to evaluate therapies that may improve sepsis outcomes. This landscape analysis of community-acquired childhood sepsis in Australia and New Zealand will characterise the burden of disease, including incidence, severity, outcomes and cost. Sepsis diagnostic criteria and risk stratification tools will be prospectively evaluated. Sepsis therapies, quality of care, parental awareness and understanding of sepsis and parent-reported outcome measures will be described. Understanding these aspects of sepsis care is fundamental for the design and conduct of interventional trials to improve childhood sepsis outcomes. METHODS AND ANALYSIS: This prospective observational study will include children up to 18 years of age presenting to 12 emergency departments with suspected sepsis within the Paediatric Research in Emergency Departments International Collaborative network in Australia and New Zealand. Presenting characteristics, management and outcomes will be collected. These will include vital signs, serum biomarkers, clinician assessment of severity of disease, intravenous fluid administration for the first 24 hours of hospitalisation, organ support therapies delivered, antimicrobial use, microbiological diagnoses, hospital and intensive care unit length-of-stay, mortality censored at hospital discharge or 30 days from enrolment (whichever comes first) and parent-reported outcomes 90 days from enrolment. We will use these data to determine sepsis epidemiology based on existing and novel diagnostic criteria. We will also validate existing and novel sepsis risk stratification criteria, characterise antimicrobial stewardship, guideline adherence, cost and report parental awareness and understanding of sepsis and parent-reported outcome measures. ETHICS AND DISSEMINATION: Ethics approval was received from the Royal Children's Hospital of Melbourne, Australia Human Research Ethics Committee (HREC/69948/RCHM-2021). This included incorporated informed consent for follow-up. The findings will be disseminated in a peer-reviewed journal and at academic conferences. TRIAL REGISTRATION NUMBER: ACTRN12621000920897; Pre-results.


Asunto(s)
Sepsis , Niño , Humanos , Australia/epidemiología , Nueva Zelanda/epidemiología , Sepsis/diagnóstico , Sepsis/epidemiología , Sepsis/terapia , Proyectos de Investigación , Hospitalización , Estudios Observacionales como Asunto
18.
Ann Am Thorac Soc ; 21(2): 279-286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38054759

RESUMEN

Rationale: The role and timing of vitamin D supplementation in the prevention of asthma has not been fully elucidated. Objective: To describe the association between prenatal and postnatal vitamin D with offspring asthma outcomes in participants of the Vitamin D Antenatal Asthma Reduction Trial. Methods: We classified 748 mother-offspring pairs into four groups based on the mother's randomization to receive high-dose versus low-dose (4,400 IU vs. 400 IU) vitamin D supplementation during pregnancy and the offspring parent-reported high-dose versus low-dose (⩾400 IU vs. <400 IU) vitamin D supplementation as estimated by intake of vitamin D drops or infant formula. We used logistic regression to test the association of the four vitamin D exposure groups-"mother-low/infant-low (reference)," "mother-high/infant-high," "mother-high/infant-low," and "mother-low/infant-high"-with offspring asthma and/or recurrent wheeze at age 3 years, active asthma at age 6 years, and atopic asthma at age 6 years. Results: The risk of asthma and/or recurrent wheeze at 3 years was lowest in the mother-high/infant-low group (adjusted odds ratio vs. mother-low/infant-low, 0.39; 95% confidence interval, 0.16-0.88, P = 0.03). When stratifying by history of exclusive breastfeeding until age 4 months, the protective effect in the mother-high/infant-low group was seen only among exclusively breastfed infants (odds ratio vs. mother-low/infant-low, 0.19; 95% confidence interval, 0.04-0.68; P = 0.02). We did not observe any significant associations with active or atopic asthma at age 6 years. Conclusions: We observe that high-dose prenatal and low-dose postnatal vitamin D supplementation may be associated with reduced offspring asthma or recurrent wheeze by age 3 years, but this association may be confounded by the protective effect of breastfeeding.


Asunto(s)
Asma , Vitamina D , Lactante , Femenino , Humanos , Embarazo , Preescolar , Niño , Suplementos Dietéticos , Vitaminas , Asma/epidemiología , Asma/prevención & control , Familia , Ruidos Respiratorios
19.
Pediatrics ; 153(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084084

RESUMEN

Sepsis and septic shock are major causes of morbidity, mortality, and health care costs for children worldwide, including >3 million deaths annually and, among survivors, risk for new or worsening functional impairments, including reduced quality of life, new respiratory, nutritional, or technological assistance, and recurrent severe infections. Advances in understanding sepsis pathophysiology highlight a need to update the definition and diagnostic criteria for pediatric sepsis and septic shock, whereas new data support an increasing role for automated screening algorithms and biomarker combinations to assist earlier recognition. Once sepsis or septic shock is suspected, attention to prompt initiation of broad-spectrum empiric antimicrobial therapy, fluid resuscitation, and vasoactive medications remain key components to initial management with several new and ongoing studies offering new insights into how to optimize this approach. Ultimately, a key goal is for screening to encompass as many children as possible at risk for sepsis and trigger early treatment without increasing unnecessary broad-spectrum antibiotics and preventable hospitalizations. Although the role for adjunctive treatment with corticosteroids and other metabolic therapies remains incompletely defined, ongoing studies will soon offer updated guidance for optimal use. Finally, we are increasingly moving toward an era in which precision therapeutics will bring novel strategies to improve outcomes, especially for the subset of children with sepsis-induced multiple organ dysfunction syndrome and sepsis subphenotypes for whom antibiotics, fluid, vasoactive medications, and supportive care remain insufficient.


Asunto(s)
Sepsis , Choque Séptico , Niño , Humanos , Choque Séptico/diagnóstico , Calidad de Vida , Sepsis/terapia , Sepsis/tratamiento farmacológico , Antibacterianos/uso terapéutico , Fenotipo
20.
Nat Ecol Evol ; 8(1): 22-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37974003

RESUMEN

Previous studies suggested that microbial communities can harbour keystone species whose removal can cause a dramatic shift in microbiome structure and functioning. Yet, an efficient method to systematically identify keystone species in microbial communities is still lacking. Here we propose a data-driven keystone species identification (DKI) framework based on deep learning to resolve this challenge. Our key idea is to implicitly learn the assembly rules of microbial communities from a particular habitat by training a deep-learning model using microbiome samples collected from this habitat. The well-trained deep-learning model enables us to quantify the community-specific keystoneness of each species in any microbiome sample from this habitat by conducting a thought experiment on species removal. We systematically validated this DKI framework using synthetic data and applied DKI to analyse real data. We found that those taxa with high median keystoneness across different communities display strong community specificity. The presented DKI framework demonstrates the power of machine learning in tackling a fundamental problem in community ecology, paving the way for the data-driven management of complex microbial communities.


Asunto(s)
Aprendizaje Profundo , Microbiota , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...