Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Imaging ; 10(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535140

RESUMEN

The rate of parental consent for fetal and perinatal autopsy is decreasing, whereas parents are more likely to agree to virtual autopsy by non-invasive imaging methods. Fetal and perinatal virtual autopsy needs high-resolution and good soft-tissue contrast for investigation of the cause of death and underlying trauma or pathology in fetuses and stillborn infants. This is offered by micro-computed tomography (CT), as opposed to the limited resolution provided by clinical CT scanners, and this is one of the most promising tools for non-invasive perinatal postmortem imaging. We developed and optimized a micro-CT scanner with a dual-energy imaging option. It is dedicated to post-mortem CT angiography and virtual autopsy of fetuses and stillborn infants in that the chamber can be cooled down to around 5 °C; this increases tissue rigidity and slows decomposition of the native specimen. This, together with the dedicated gantry-based architecture, attempts to reduce potential motion artifacts. The developed methodology is based on prior endovascular injection of a BaSO4-based contrast agent. We explain the design choices and considerations for this scanner prototype. We give details of the treatment of the optimization of the dual-energy and virtual mono-energetic imaging option that has been based on minimizing noise propagation and maximizing the contrast-to-noise ratio for vascular features. We demonstrate the scanner capabilities with proof-of-concept experiments on phantoms and stillborn piglets.

2.
Sci Rep ; 13(1): 20434, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993496

RESUMEN

The electronic structure of UC[Formula: see text] (x = 0.9, 1.0, 1.1, 2.0) was studied by means of x-ray absorption spectroscopy (XAS) at the C K edge and measurements in the high energy resolution fluorescence detection (HERFD) mode at the U [Formula: see text] and [Formula: see text] edges. The full-relativistic density functional theory calculations taking into account the [Formula: see text] Coulomb interaction U and spin-orbit coupling (DFT+U+SOC) were also performed for UC and UC[Formula: see text]. While the U [Formula: see text] HERFD-XAS spectra of the studied samples reveal little difference, the U [Formula: see text] HERFD-XAS spectra show certain sensitivity to the varying carbon content in uranium carbides. The observed gradual changes in the U [Formula: see text] HERFD spectra suggest an increase in the C 2p-U 5f charge transfer, which is supported by the orbital population analysis in the DFT+U+SOC calculations, indicating an increase in the U 5f occupancy in UC[Formula: see text] as compared to that in UC. On the other hand, the density of states at the Fermi level were found to be significantly lower in UC[Formula: see text], thus affecting the thermodynamic properties. Both the x-ray spectroscopic data (in particular, the C K XAS measurements) and results of the DFT+U+SOC calculations indicate the importance of taking into account U and SOC for the description of the electronic structure of actinide carbides.

4.
Eur Radiol Exp ; 7(1): 30, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37332035

RESUMEN

BACKGROUND: Artificial intelligence (AI)-powered, robot-assisted, and ultrasound (US)-guided interventional radiology has the potential to increase the efficacy and cost-efficiency of interventional procedures while improving postsurgical outcomes and reducing the burden for medical personnel. METHODS: To overcome the lack of available clinical data needed to train state-of-the-art AI models, we propose a novel approach for generating synthetic ultrasound data from real, clinical preoperative three-dimensional (3D) data of different imaging modalities. With the synthetic data, we trained a deep learning-based detection algorithm for the localization of needle tip and target anatomy in US images. We validated our models on real, in vitro US data. RESULTS: The resulting models generalize well to unseen synthetic data and experimental in vitro data making the proposed approach a promising method to create AI-based models for applications of needle and target detection in minimally invasive US-guided procedures. Moreover, we show that by one-time calibration of the US and robot coordinate frames, our tracking algorithm can be used to accurately fine-position the robot in reach of the target based on 2D US images alone. CONCLUSIONS: The proposed data generation approach is sufficient to bridge the simulation-to-real gap and has the potential to overcome data paucity challenges in interventional radiology. The proposed AI-based detection algorithm shows very promising results in terms of accuracy and frame rate. RELEVANCE STATEMENT: This approach can facilitate the development of next-generation AI algorithms for patient anatomy detection and needle tracking in US and their application to robotics. KEY POINTS: • AI-based methods show promise for needle and target detection in US-guided interventions. • Publicly available, annotated datasets for training AI models are limited. • Synthetic, clinical-like US data can be generated from magnetic resonance or computed tomography data. • Models trained with synthetic US data generalize well to real in vitro US data. • Target detection with an AI model can be used for fine positioning of the robot.


Asunto(s)
Inteligencia Artificial , Robótica , Humanos , Ultrasonografía , Agujas , Ultrasonografía Intervencional/métodos
5.
Environ Sci Nano ; 9(4): 1509-1518, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35520632

RESUMEN

The aim of this study is to synthesize PuO2 nanoparticles (NPs) at low pH values and characterize the materials using laboratory and synchrotron-based methods. Properties of the PuO2 NPs formed under acidic conditions (pH 1-4) are explored here at the atomic scale. High-resolution transmission electron microscopy (HRTEM) is applied to characterize the crystallinity, morphology and size of the particles. It is found that 2 nm crystalline NPs are formed with a PuO2 crystal structure. High energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy at the Pu M4 edge has been used to identify the Pu oxidation states and recorded data are analysed using the theory based on the Anderson impurity model (AIM). The experimental data obtained on NPs show that the Pu(iv) oxidation state dominates in all NPs formed at pH 1-4. However, the suspension at pH 1 demonstrates the presence of Pu(iii) and Pu(vi) in addition to the Pu(iv), which is associated with redox dissolution of PuO2 NPs under acidic conditions. We discuss in detail the mechanism that affects the PuO2 NPs synthesis under acidic conditions and compare it with one in neutral and alkaline conditions. Hence, the results shown here, together with the first Pu M4 HERFD data on PuF3 and PuF4 compounds, are significant for the colloid facilitated transport governing the migration of plutonium in a subsurface environment.

6.
J Synchrotron Radiat ; 29(Pt 2): 295-302, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254291

RESUMEN

UC and UMeC2 (Me = Fe, Zr, Mo) carbides were studied by the high-energy-resolution fluorescence-detected X-ray absorption (HERFD-XAS) technique at the U M4 and L3 edges. Both U M4 and L3 HERFD-XAS reveal some differences between UMeC2 and UC; there are differences also between the M4 and L3 edge results for both types of carbide in terms of the spectral width and energy position. The observed differences are attributed to the consequences of the U 5f, 6d-4d(3d) hybridization in UMeC2. Calculations of the U M4 HERFD-XAS spectra were also performed using the Anderson impurity model (AIM). Based on the analysis of the data, the 5f occupancy in the ground state of UC was estimated to be 3.05 electrons. This finding is also supported by the analysis of U N4,5 XAS of UC and by the results of the AIM calculations of the U 4f X-ray photoelectron spectrum of UC.

7.
Phys Rev Lett ; 128(8): 084501, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35275677

RESUMEN

While the heat transfer and the flow dynamics in a cylindrical Rayleigh-Bénard (RB) cell are rather independent of the aspect ratio Γ (diameter/height) for large Γ, a small-Γ cell considerably stabilizes the flow and thus affects the heat transfer. Here, we first theoretically and numerically show that the critical Rayleigh number for the onset of convection at given Γ follows Ra_{c,Γ}∼Ra_{c,∞}(1+CΓ^{-2})^{2}, with C≲1.49 for Oberbeck-Boussinesq (OB) conditions. We then show that, in a broad aspect ratio range (1/32)≤Γ≤32, the rescaling Ra→Ra_{ℓ}≡Ra[Γ^{2}/(C+Γ^{2})]^{3/2} collapses various OB numerical and almost-OB experimental heat transport data Nu(Ra,Γ). Our findings predict the Γ dependence of the onset of the ultimate regime Ra_{u,Γ}∼[Γ^{2}/(C+Γ^{2})]^{-3/2} in the OB case. This prediction is consistent with almost-OB experimental results (which only exist for Γ=1, 1/2, and 1/3) for the transition in OB RB convection and explains why, in small-Γ cells, much larger Ra (namely, by a factor Γ^{-3}) must be achieved to observe the ultimate regime.

8.
J Am Chem Soc ; 144(7): 2879-2884, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35143201

RESUMEN

We have constructed an unprecedented MOF platform that accommodates a range of 5f-block metal ions (Th4+, U4+, Np4+, Pu4+) as the primary building block. The isoreticular actinide metal-organic frameworks (An-MOFs) exhibit periodic trends in the 12-coordinate metal environment, ligand configuration, and resulting ultramicroporosity. It holds potential in distinguishing neighboring tetravalent actinides. The metal ionic radius, carboxylate bite angle, anthracene plane twisting, interligand interactions, and countercation templating collectively determine an interplay between solvation, modulation, and complexation, resulting in a coordination saturation of the central actinide, while lanthanide counterparts are stabilized by the formation of a dimer-based motif. Quantum chemical calculations indicate that this large coordination number is only feasible in the high-symmetry environment provided by the An-MOFs. This category of MOFs not only demonstrates autoluminescence (4.16 × 104 counts per second per gram) but also portends a wide-bandgap (2.84 eV) semiconducting property with implications for a multitude of applications such as hard radiation detection.

9.
J Imaging ; 7(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34821867

RESUMEN

Accurately estimating the six degree of freedom (6-DoF) pose of objects in images is essential for a variety of applications such as robotics, autonomous driving, and autonomous, AI, and vision-based navigation for unmanned aircraft systems (UAS). Developing such algorithms requires large datasets; however, generating those is tedious as it requires annotating the 6-DoF relative pose of each object of interest present in the image w.r.t. to the camera. Therefore, this work presents a novel approach that automates the data acquisition and annotation process and thus minimizes the annotation effort to the duration of the recording. To maximize the quality of the resulting annotations, we employ an optimization-based approach for determining the extrinsic calibration parameters of the camera. Our approach can handle multiple objects in the scene, automatically providing ground-truth labeling for each object and taking into account occlusion effects between different objects. Moreover, our approach can not only be used to generate data for 6-DoF pose estimation and corresponding 3D-models but can be also extended to automatic dataset generation for object detection, instance segmentation, or volume estimation for any kind of object.

10.
Sci Total Environ ; 770: 145334, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736379

RESUMEN

The uptake of the fission product technetium (Tc) by chukanovite, an FeII hydroxy carbonate mineral formed as a carbon steel corrosion product in anoxic and carbonate-rich environments, was studied under anoxic, alkaline to hyperalkaline conditions representative for nuclear waste repositories in deep geological formations with cement-based inner linings. The retention potential of chukanovite towards TcVII is high in the pH range 7.8 to 12.6, evidenced by high solid-water distribution coefficients, log Rd ~ 6, and independent of ionic strength (0.1 or 1 M NaCl). Using Tc K-edge X-ray absorption spectroscopy (XAS) two series of samples were investigated, Tc chukanovite sorption samples and coprecipitates, prepared with varying Tc loadings, pH values and contact times. From the resulting 37 XAS spectra, spectral endmembers and their dependence on chemical parameters were derived by self-organizing (Kohonen) maps (SOM), a neural network-based approach of machine learning. X-ray absorption near-edge structure (XANES) data confirmed the complete reduction of TcVII to TcIV by chukanovite under all experimental conditions. Consistent with mineralogical phases identified by X-ray diffraction (XRD), SOM analysis of the extended X-ray absorption fine-structure (EXAFS) spectra revealed the presence of three species in the sorption samples, the speciation predominately controlled by pH: Between pH 7.8 and 11.8, TcO2-dimers form inner-sphere sorption complexes at the surface of the initial chukanovite as well as on the surface of secondary magnetite formed due to redox reaction. At pH ≥ 11.9, TcIV is incorporated in a mixed, chukanovite-like, Fe/Tc hydroxy carbonate precipitate. The same species formed when using the coprecipitation approach. Reoxidation of sorption samples resulted in a small remobilization of Tc, demonstrating that both the original chukanovite mineral and its oxidative transformation products, magnetite and goethite, contribute to the immobilization of Tc in the long term, thus strongly attenuating its environmental transport.

11.
Environ Sci Pollut Res Int ; 28(30): 40264-40274, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33387313

RESUMEN

Bioreduction of selenium oxyanions to elemental selenium is ubiquitous; elucidating the properties of this biogenic elemental selenium (BioSe) is thus important to understand its environmental fate. In this study, the magnetic properties of biogenic elemental selenium nanospheres (BioSe-Nanospheres) and nanorods (BioSe-Nanorods) obtained via the reduction of selenium(IV) using anaerobic granular sludge taken from an upflow anaerobic sludge blanket (UASB) reactor treating paper and pulp wastewater were investigated. The study indicated that the BioSe nanomaterials have a strong paramagnetic contribution with some ferromagnetic component due to the incorporation of Fe(III) (high-spin and low-spin species) as indicated by electron paramagnetic resonance (EPR). The paramagnetism did not saturate up to 50,000 Oe at 5 K, and the hysteresis curve showed the coercivity of 100 Oe and magnetic moment saturation around 10 emu. X-ray photoelectron spectroscopy (XPS) and EPR evidenced the presence of Fe(III) in the nanomaterial. Signals for Fe(II) were observed neither in EPR nor in XPS ruling out its presence in the BioSe nanoparticles. Fe(III) being abundantly present in the sludge likely got entrapped in the extracellular polymeric substances (EPS) coating the biogenic nanomaterials. The presence of Fe(III) in BioSe nanomaterial increases the mobility of Fe(III) and may have an effect on phytoplankton growth in the environment. Furthermore, as supported by the literature, there is a potential to exploit the magnetic properties of BioSe nanomaterials in drug delivery systems as well as in space refrigeration.


Asunto(s)
Nanoestructuras , Selenio , Compuestos Férricos , Fenómenos Magnéticos , Aguas del Alcantarillado
12.
Chemistry ; 27(1): 252-263, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32956492

RESUMEN

The structural characterisation of actinide nanoparticles (NPs) is of primary importance and hard to achieve, especially for non-homogeneous samples with NPs less than 3 nm. By combining high-energy X-ray scattering (HEXS) and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD XANES) analysis, we have characterised for the first time both the short- and medium-range order of ThO2 NPs obtained by chemical precipitation. By using this methodology, a novel insight into the structures of NPs at different stages of their formation has been achieved. The pair distribution function revealed a high concentration of ThO2 small units similar to thorium hexamer clusters mixed with 1 nm ThO2 NPs in the initial steps of formation. Drying the precipitates at around 150 °C promoted the recrystallisation of the smallest units into more thermodynamically stable ThO2 NPs. HERFD XANES analysis at the thorium M4 edge, a direct probe for f states, showed variations that we have correlated with the breakdown of the local symmetry around the thorium atoms, which most likely concerns surface atoms. Together, HEXS and HERFD XANES are a powerful methodology for investigating actinide NPs and their formation mechanism.

13.
Chemistry ; 27(1): 5, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33210366

RESUMEN

Invited for the cover of this issue is Lucia Amidani and co-workers from the The European Synchrotron, Helmholtz Zentrum Dresden-Rossendorf, Lomonosov Moscow State University, Kurchatov Institute, and the Université Grenoble Alpes. The image depicts the atomic structure of the sample being viewed through "atomic googles", which represent the X-ray techniques used in this work. Read the full text of the article at 10.1002/chem.202003360.

14.
Astrobiology ; 20(11): 1321-1337, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33179969

RESUMEN

As a part of the AMADEE-18 analog Mars mission, designed to study challenges associated with human-based exploration of the Red Planet, we focused our team efforts on testing means to localize an unmanned aerial vehicle (UAV) on Mars. Robot helicopters, such as the one selected for a technology demonstration as a part of NASA's Mars 2020 mission, are small and their performance is computationally limited. An essential aspect of navigation and path planning of an autonomous helicopter is accurate localization of the robot. In the absence of a global positioning system, a computationally efficient localization technology that can be applied on Mars is visual-inertial odometry (VIO). The AMADEE-18 mission provided an opportunity to test the feasibility of a state-of-the-art VIO algorithm and the camera in a Mars-like analog environment. The flight datasets included different terrain structures that challenged the functionality of VIO algorithms. The experiment has yielded valuable insights into the desired surface structure, texture, and mission times for surface relative navigation of UAV on Mars.


Asunto(s)
Marte , Vuelo Espacial , Simulación del Espacio , Nave Espacial , Robótica
15.
Chem Commun (Camb) ; 56(67): 9608-9611, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686799

RESUMEN

A general strategy for the determination of Tc oxidation state by new approach involving X-ray absorption near edge spectroscopy (XANES) at the Tc L3 edge is shown. A comprehensive series of 99Tc compounds, ranging from oxidation states I to VII, was measured and subsequently simulated within the framework of crystal-field multiplet theory. The observable trends in the absorption edge energy shift in combination with the spectral shape allow for a deeper understanding of complicated Tc coordination chemistry. This approach can be extended to numerous studies of Tc systems as this method is one of the most sensitive methods for accurate Tc oxidation state and ligand characterization.

16.
Nanoscale ; 12(35): 18039-18048, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32648876

RESUMEN

The nanoscience field often produces results more mystifying than any other discipline. It has been argued that changes in the plutonium dioxide (PuO2) particle size from bulk to nano can have a drastic effect on PuO2 properties. Here we report a full characterization of PuO2 nanoparticles (NPs) at the atomic level and probe their local and electronic structures by a variety of methods available at the synchrotron, including extended X-ray absorption fine structure (EXAFS) at the Pu L3 edge, X-ray absorption near edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode at the Pu L3 and M4 edges, high energy X-ray scattering (HEXS) and X-ray diffraction (XRD). The particles were synthesized from precursors with different oxidation states of plutonium (III, IV, and V) under various environmentally and waste storage relevant conditions (pH 8 and pH > 10). Our experimental results analyzed with state-of-the-art theoretical approaches demonstrate that well dispersed, crystalline NPs with a size of ∼2.5 nm in diameter are always formed in spite of diverse chemical conditions. Identical crystal structures and the presence of only the Pu(iv) oxidation state in all NPs, reported here for the first time, indicate that the structure of PuO2 NPs is very similar to that of the bulk PuO2. All methods give complementary information and show that investigated fundamental properties of PuO2 NPs, rather than being exotic, are very similar to those of the bulk PuO2.

17.
Phys Rev Lett ; 124(8): 084505, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167333

RESUMEN

For rapidly rotating turbulent Rayleigh-Bénard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one, whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like Ra^{1/4}Ek^{2/3} where the Ekman number Ek decreases with increasing rotation rate.

18.
Angew Chem Int Ed Engl ; 58(49): 17558-17562, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31621992

RESUMEN

Here we provide evidence that the formation of PuO2 nanoparticles from oxidized PuVI under alkaline conditions proceeds through the formation of an intermediate PuV solid phase, similar to NH4 PuO2 CO3 , which is stable over a period of several months. For the first time, state-of-the-art experiments at Pu M4 and at L3 absorption edges combined with theoretical calculations unambiguously allow to determine the oxidation state and the local structure of this intermediate phase.

19.
Phys Chem Chem Phys ; 21(20): 10635-10643, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31080986

RESUMEN

Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO2 NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations. The first post-edge feature of Th L3 edge HERFD XANES disappears in small NPs and simulations considering non-relaxed structural models reproduce the trends observed in experimental data. Inspection of the simulations of Th atoms in the core and on the surface of the NP indeed demonstrates that the first post-edge feature is very sensitive to the lowering of the number of coordinating atoms and therefore to the more exposed Th atoms at the surface of the NP. The sensitivity of the L3 edge HERFD XANES to low coordinated atoms at the surface stems from the hybridization of the d-Density of States (DOS) of Th with both O and Th neighboring atoms. This may be a common feature to other oxide systems that can be exploited to investigate surface interactions.

20.
Inorg Chem ; 58(7): 4173-4189, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860361

RESUMEN

Hexavalent uranium is ubiquitous in the environment. In view of the chemical and radiochemical toxicity of uranium(VI), a good knowledge of its possible interactions in the environment is crucial. The aim of this work was to identify typical binding and sorption characteristics of uranium(VI) with both the pure bovine milk protein ß-casein and diverse related protein mixtures (caseins, whey proteins). For comparison, selected model peptides representing the amino acid sequence 13-16 of ß-casein and dephosphorylated ß-casein were also studied. Complexation studies using potentiometric titration and time-resolved laser-induced fluorescence spectroscopy revealed that the phosphoryl-containing proteins form uranium(VI) complexes of higher stability than the structure-analog phosphoryl-free proteins. That is in agreement with the sorption experiments showing a significantly higher affinity of caseins toward uranium(VI) in comparison to whey proteins. On the other hand, the total sorption capacity of caseins is lower than that of whey proteins. The discussed binding behavior of milk proteins to uranium(VI) might open up interesting perspectives for sustainable techniques of uranium(VI) removal from aqueous solutions. This was further demonstrated by batch experiments on the removal of uranium(VI) from mineral water samples.


Asunto(s)
Caseínas/metabolismo , Péptidos/metabolismo , Uranio/metabolismo , Proteína de Suero de Leche/metabolismo , Adsorción , Animales , Caseínas/química , Bovinos , Complejos de Coordinación/química , Estructura Molecular , Manantiales Naturales/química , Péptidos/química , Unión Proteica , Uranio/química , Proteína de Suero de Leche/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...