Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568967

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Endorribonucleasas/metabolismo , Transducción de Señal , Antivirales
3.
mBio ; 15(4): e0312923, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38477472

RESUMEN

The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses, including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation, and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN-stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper respiratory tract and least favorable in the lower respiratory cell line, and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals. IMPORTANCE: Comparative analysis of infections by SARS-CoV-2 ancestral virus and variants of concern, including Alpha, Beta, Delta, and Omicron, indicated that variants were selected for efficiency in replication. In infections of patient-derived primary nasal cultures grown at air-liquid interface to model upper respiratory infection, Omicron reached the highest titers at early time points, a finding that was confirmed by parallel population sampling studies. While all infections overcame dsRNA-mediated host responses, infections with Omicron induced the strongest interferon and interferon-stimulated gene response. In both primary nasal cultures and lower respiratory cell line, infections by Delta were most damaging to the cells as indicated by syncytia formation, loss of cell barrier integrity, and nasal ciliary function.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Línea Celular , Interferones
4.
J Virol ; 98(3): e0188323, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38376197

RESUMEN

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.


Asunto(s)
Arenaviridae , Coriomeningitis Linfocítica , Humanos , Arenaviridae/metabolismo , Línea Celular , Proteínas Quinasas/metabolismo , Interacciones Huésped-Patógeno , Virus de la Coriomeningitis Linfocítica/metabolismo , Proteínas Portadoras , Antivirales , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
6.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106082

RESUMEN

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double strand (ds)RNA sensor protein kinase receptor (PKR) pathway plays a critical role in the cell antiviral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the antiviral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein (NP) resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro-and antiviral activities.

7.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014074

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2 (nsp15mut) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15 mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI culture.

8.
PLoS Pathog ; 19(10): e1011728, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37856551

RESUMEN

Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-ß, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Pandemias , Jamaica , Linfocitos T Reguladores
9.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790463

RESUMEN

Double-stranded RNA (dsRNA) is a pathogen associated molecular pattern recognized by multiple pattern recognition receptors and induces innate immune responses. Viral infections can generate dsRNA during virus replication. Genetic mutations can also lead to endogenous dsRNA accumulation. DsRNA is present in multiple conformations such as the A form (A-dsRNA) or Z form (Z-dsRNA). A-dsRNA has been detected from multiple viruses with positive-stranded RNA genomes (+ssRNA) but rarely from viruses with negative RNA genomes (-RNA); Z-dsRNA can be detected from influenza virus and poxvirus infections. Viruses have evolved mechanisms to antagonize cellular antiviral responses triggered by dsRNAs. For example, the vaccinia-virus E3L protein can bind and sequester dsRNA to evade host immune responses. The E3L protein encodes a Z-DNA and a dsRNA binding domains that bind to Z-form nucleic acids or dsRNA, respectively. Here we developed recombinant E3L proteins to detect dsRNA and Z-dsRNA generated from viral infections or endogenous cellular mutations. We demonstrate that the E3L recombinant protein specifically detects A-dsRNA generated from +ssRNA viruses but not-RNA viruses. We observe that among various virus infections assayed, only the influenza A virus generates Z-RNA that can be detected by anti-Z-NA antibody but not by the E3L recombinant protein containing the Z-DNA domain. The E3L recombinant protein can also detect endogenous dsRNA in PNPT1 or SUV3L1 knockout cells. Together we concluded that A-dsRNA can be produced and detected from viruses with +ssRNA genomes but not-RNA genomes, and Z-dsRNA can be produced and detected from influenza A virus. Importance: The detection of dsRNAs, which exist in the A-dsRNA or Z-RNA conformation, is important for the induction of innate immune responses. dsRNA are generated during a virus infection due to virus replication, or can accumulate to genetic mutations. We engineered recombinant vaccinia virus E3L protein that can detect A-dsRNA generated during infection with a positive-sense RNA genome virus but not a negative-sense RNA genome virus. Infection with influenza A virus generates Z-RNA that can be detected with an anti-z-antibody but not the E3L recombinant protein. The E3L recombinant protein also detects endogenous dsRNA in PNPT1 or SUV3L knockout cells. These findings highlight important characteristics of dsRNA structure and detection.

10.
J Vis Exp ; (199)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37811957

RESUMEN

Three highly pathogenic human coronaviruses (HCoVs) - SARS-CoV (2002), MERS-CoV (2012), and SARS-CoV-2 (2019) - have emerged and caused significant public health crises in the past 20 years. Four additional HCoVs cause a significant portion of common cold cases each year (HCoV-NL63, -229E, -OC43, and -HKU1), highlighting the importance of studying these viruses in physiologically relevant systems. HCoVs enter the respiratory tract and establish infection in the nasal epithelium, the primary site encountered by all respiratory pathogens. We use a primary nasal epithelial culture system in which patient-derived nasal samples are grown at an air-liquid interface (ALI) to study host-pathogen interactions at this important sentinel site. These cultures recapitulate many features of the in vivo airway, including the cell types present, ciliary function, and mucus production. We describe methods to characterize viral replication, host cell tropism, virus-induced cytotoxicity, and innate immune induction in nasal ALI cultures following HCoV infection, using recent work comparing lethal and seasonal HCoVs as an example1. An increased understanding of host-pathogen interactions in the nose has the potential to provide novel targets for antiviral therapeutics against HCoVs and other respiratory viruses that will likely emerge in the future.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Células Epiteliales , SARS-CoV-2 , Replicación Viral , Mucosa Nasal
11.
Curr Protoc ; 3(10): e914, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37882768

RESUMEN

HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1 are four of the seven known human coronaviruses (HCoVs) and, unlike the highly pathogenic SARS-CoV, MERS-CoV, and SARS-CoV-2, these four so-called seasonal HCoVs generally cause mild upper-respiratory-tract illness. As Biosafety Level 2 (BSL-2) pathogens, the seasonal HCoVs are more accessible and can be used as surrogates for studying the highly pathogenic HCoVs. However, scientists have for many years found these difficult to study because of the lack of a universal culture system and the inability of typical culture methods to yield high-titer infectious stocks. We have developed assays to grow and quantify infectious virus and viral RNA for HCoV-OC43, -229E, and -NL63. We identified which immortalized cell lines should be used to optimize the replication of HCoV-OC43, -229E, and -NL63 in order to generate high titers (Vero E6, Huh-7, and LLC-MK2 cells, respectively). Here we present protocols for improved propagation and quantification of each seasonal HCoV. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Growth of HCoVs Basic Protocol 2: Quantification of HCoV by plaque assay Basic Protocol 3: Quantification of HCoV RNA products of replication Basic Protocol 4: Concentrating HCoVs via ultracentrifugation.


Asunto(s)
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Humanos , Técnicas de Cultivo , ARN Viral/genética
12.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662273

RESUMEN

The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid-interface (ALI) were used to model upper-respiratory infection and human lung epithelial cell lines used to model lower-respiratory infection. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell-barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper-respiratory system and least-favorable in the lower-respiratory cell line; and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals.

14.
Transfusion ; 63(6): 1113-1121, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37190781

RESUMEN

BACKGROUND: Reducing variation in transfusion practices can prevent unwarranted transfusions, an outcome that improves quality of care and patient safety, while lowering costs and eliminating waste of blood. We developed and assessed a system-wide initiative to reduce variation in red blood cell (RBC) transfusion in terms of both transfusion utilization and the number of units transfused. INTERVENTION DESIGN AND METHODS: Our initiative combined a single-unit default order for RBC transfusion in hemodynamically stable, non-bleeding patients with a "Why Give 2 When 1 Will Do?" Choosing Wisely campaign, while also promoting a restrictive hemoglobin threshold (Hb <7 g/dl). This multimodal intervention was implemented across an academic medical center (AMC) with over 950 beds and 10 community hospitals. RESULTS: Between our baseline (CY 2020) and intervention period (CY 2021), single-unit orders increased from 57% to 70% of all RBC transfusion orders (p < .001). The greatest change in ordering practices was at community hospitals, where single-unit orders increased from 46% to 65% (p < .001). Over the same time period, the system-wide mean (SD) Hb result prior to transfusion fell from 7.3 (0.05) to 7.2 g/dl (0.04) (p < .05). We estimate this effort saved over 4000 units of blood and over $4 million in direct and indirect costs in its first year. DISCUSSION: By combining a single-unit default setting in the RBC order with a restrictive hemoglobin threshold, we significantly reduced variation in ordering practices. This effort demonstrates the value of single-unit policies and "nudges" in system-wide patient blood management initiatives.


Asunto(s)
Transfusión de Eritrocitos , Hemoglobinas , Humanos , Hemoglobinas/análisis , Transfusión Sanguínea , Bancos de Sangre , Centros Médicos Académicos
15.
Proc Natl Acad Sci U S A ; 120(15): e2218083120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37023127

RESUMEN

The nasal epithelium is the initial entry portal and primary barrier to infection by all human coronaviruses (HCoVs). We utilize primary human nasal epithelial cells grown at air-liquid interface, which recapitulate the heterogeneous cellular population as well as mucociliary clearance functions of the in vivo nasal epithelium, to compare lethal [Severe acute respiratory syndrome (SARS)-CoV-2 and Middle East respiratory syndrome-CoV (MERS-CoV)] and seasonal (HCoV-NL63 and HCoV-229E) HCoVs. All four HCoVs replicate productively in nasal cultures, though replication is differentially modulated by temperature. Infections conducted at 33 °C vs. 37 °C (reflective of temperatures in the upper and lower airway, respectively) revealed that replication of both seasonal HCoVs (HCoV-NL63 and -229E) is significantly attenuated at 37 °C. In contrast, SARS-CoV-2 and MERS-CoV replicate at both temperatures, though SARS-CoV-2 replication is enhanced at 33 °C late in infection. These HCoVs also diverge significantly in terms of cytotoxicity induced following infection, as the seasonal HCoVs as well as SARS-CoV-2 cause cellular cytotoxicity as well as epithelial barrier disruption, while MERS-CoV does not. Treatment of nasal cultures with type 2 cytokine IL-13 to mimic asthmatic airways differentially impacts HCoV receptor availability as well as replication. MERS-CoV receptor DPP4 expression increases with IL-13 treatment, whereas ACE2, the receptor used by SARS-CoV-2 and HCoV-NL63, is down-regulated. IL-13 treatment enhances MERS-CoV and HCoV-229E replication but reduces that of SARS-CoV-2 and HCoV-NL63, reflecting the impact of IL-13 on HCoV receptor availability. This study highlights diversity among HCoVs during infection of the nasal epithelium, which is likely to influence downstream infection outcomes such as disease severity and transmissibility.


Asunto(s)
COVID-19 , Coronaviridae , Coronavirus Humano 229E , Humanos , Interleucina-13/metabolismo , Estaciones del Año , SARS-CoV-2 , Células Epiteliales
16.
bioRxiv ; 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36824814

RESUMEN

Insectivorous Old World horseshoe bats ( Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats ( Rousettus aegyptiacus ) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats ( Eptesicus fuscus ) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats ( Artibeus jamaicensis ) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4 + helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-ß, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptibility to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease. Author Summary: Bats are reservoir hosts of many viruses that infect humans, yet little is known about how they host these viruses, principally because of a lack of relevant and susceptible bat experimental infection models. Although SARS-CoV-2 originated in bats, no robust infection models of bats have been established. We determined that Jamaican fruit bats are poorly susceptible to SARS-CoV-2; however, their lungs can be transduced with human ACE2, which renders them susceptible to SARS-CoV-2. Despite robust infection of the lungs and diminishment of pulmonary cellularity, the bats showed no overt signs of disease and cleared the infection after two weeks. Despite clearance of infection, only low-titer antibody responses occurred and only a single bat made neutralizing antibody. Assessment of the CD4 + helper T cell response showed that activated cells expressed the regulatory T cell cytokines IL-10 and TGFß that may have tempered pulmonary inflammation.

19.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187597

RESUMEN

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at air-liquid interface (ALI). HCoV-229E, HCoV-NL63 and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33°C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally-directed IFNs as potential therapeutics.

20.
PLoS One ; 17(12): e0277707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36480499

RESUMEN

Amidst the therapeutic void at the onset of the COVID-19 pandemic, a critical mass of scientific and clinical interest coalesced around COVID-19 convalescent plasma (CCP). To date, the CCP literature has focused largely on safety and efficacy outcomes, but little on implementation outcomes or experience. Expert opinion suggests that if CCP has a role in COVID-19 treatment, it is early in the disease course, and it must deliver a sufficiently high titer of neutralizing antibodies (nAb). Missing in the literature are comprehensive evaluations of how local CCP programs were implemented as part of pandemic preparedness and response, including considerations of the core components and personnel required to meet demand with adequately qualified CCP in a timely and sustained manner. To address this gap, we conducted an evaluation of a local CCP program at a large U.S. academic medical center, the University of North Carolina Medical Center (UNCMC), and patterned our evaluation around the dimensions of the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework to systematically describe key implementation-relevant metrics. We aligned our evaluation with program goals of reaching the target population with severe or critical COVID-19, integrating into the structure of the hospital-wide pandemic response, adapting to shifting landscapes, and sustaining the program over time during a compassionate use expanded access program (EAP) era and a randomized controlled trial (RCT) era. During the EAP era, the UNCMC CCP program was associated with faster CCP infusion after admission compared with contemporaneous affiliate hospitals without a local program: median 29.6 hours (interquartile range, IQR: 21.2-48.1) for the UNCMC CCP program versus 47.6 hours (IQR 32.6-71.6) for affiliate hospitals; (P<0.0001). Sixty-eight of 87 CCP recipients in the EAP (78.2%) received CCP containing the FDA recommended minimum nAb titer of ≥1:160. CCP delivery to hospitalized patients operated with equal efficiency regardless of receiving treatment via a RCT or a compassionate-use mechanism. It was found that in a highly resourced academic medical center, rapid implementation of a local CCP collection, treatment, and clinical trial program could be achieved through re-deployment of highly trained laboratory and clinical personnel. These data provide important pragmatic considerations critical for health systems considering the use of CCP as part of an integrated pandemic response.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/terapia , Centros Médicos Académicos , Plasma , Pandemias , Anticuerpos Neutralizantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...