Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30130203

RESUMEN

The comparison of many members of an ensemble is difficult, tedious, and error-prone, which is aggravated by often just subtle differences. In this paper, we introduce Dynamic Volume Lines for the interactive visual analysis and comparison of sets of 3D volumes. Each volume is linearized along a Hilbert space-filling curve into a 1D Hilbert line plot, which depicts the intensities over the Hilbert indices. We present a nonlinear scaling of these 1D Hilbert line plots based on the intensity variations in the ensemble of 3D volumes, which enables a more effective use of the available screen space. The nonlinear scaling builds the basis for our interactive visualization techniques. An interactive histogram heatmap of the intensity frequencies serves as overview visualization. When zooming in, the frequencies are replaced by detailed 1D Hilbert line plots and optional functional boxplots. To focus on important regions of the volume ensemble, nonlinear scaling is incorporated into the plots. An interactive scaling widget depicts the local ensemble variations. Our brushing and linking interface reveals, for example, regions with a high ensemble variation by showing the affected voxels in a 3D spatial view. We show the applicability of our concepts using two case studies on ensembles of 3D volumes resulting from tomographic reconstruction. In the first case study, we evaluate an artificial specimen from simulated industrial 3D X-ray computed tomography (XCT). In the second case study, a real-world XCT foam specimen is investigated. Our results show that Dynamic Volume Lines can identify regions with high local intensity variations, allowing the user to draw conclusions, for example, about the choice of reconstruction parameters. Furthermore, it is possible to detect ring artifacts in reconstructions volumes.

2.
IEEE Trans Vis Comput Graph ; 23(8): 1988-2002, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27333604

RESUMEN

This work introduces a tool for interactive exploration and visualization using MetaTracts. MetaTracts is a novel method for extraction and visualization of individual fiber bundles and weaving patterns from X-ray computed tomography (XCT) scans of endless carbon fiber reinforced polymers (CFRPs). It is designed specifically to handle XCT scans of low resolutions where the individual fibers are barely visible, which makes extraction of fiber bundles a challenging problem. The proposed workflow is used to analyze unit cells of CFRP materials integrating a recurring weaving pattern. First, a coarse version of integral curves is used to trace sections of the individual fiber bundles in the woven CFRP materials. We call these sections MetaTracts. In the second step, these extracted fiber bundle sections are clustered using a two-step approach: first by orientation, then by proximity. The tool can generate volumetric representations as well as surface models of the extracted fiber bundles to be exported for further analysis. In addition a custom interactive tool for exploration and visual analysis of MetaTracts is designed. We evaluate the proposed workflow on a number of real world datasets and demonstrate that MetaTracts effectively and robustly identifies and extracts fiber bundles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA