Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 51(5): 3421-3436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38214395

RESUMEN

BACKGROUND: Preclinical research and organ-dedicated applications use and require high (spatial-)resolution positron emission tomography (PET) detectors to visualize small structures (early) and understand biological processes at a finer level of detail. Researchers seeking to improve detector and image spatial resolution have explored various detector designs. Current commercial high-resolution systems often employ finely pixelated or monolithic scintillators, each with its limitations. PURPOSE: We present a semi-monolithic detector, tailored for high-resolution PET applications with a spatial resolution in the range of 1 mm or better, merging concepts of monolithic and pixelated crystals. The detector features LYSO slabs measuring (24 × 10 × 1) mm3, coupled to a 12 × 12 readout channel photosensor with 4 mm pitch. The slabs are grouped in two arrays of 44 slabs each to achieve a higher optical photon density despite the fine segmentation. METHODS: We employ a fan beam collimator for fast calibration to train machine-learning-based positioning models for all three dimensions, including slab identification and depth-of-interaction (DOI), utilizing gradient tree boosting (GTB). The data for all dimensions was acquired in less than 2 h. Energy calculation was based on a position-dependent energy calibration. Using an analytical timing calibration, time skews were corrected for coincidence timing resolution (CTR) estimation. RESULTS: Leveraging machine-learning-based calibration in all three dimensions, we achieved high detector spatial resolution: down to 1.18 mm full width at half maximum (FWHM) detector spatial resolution and 0.75 mm mean absolute error (MAE) in the planar-monolithic direction, and 2.14 mm FWHM and 1.03 mm MAE for DOI at an energy window of (435-585) keV. Correct slab interaction identification in planar-segmented direction exceeded 80%, alongside an energy resolution of 12.7% and a CTR of 450 ps FWHM. CONCLUSIONS: The introduced finely segmented, high-resolution slab detector demonstrates appealing performance characteristics suitable for high-resolution PET applications. The current benchtop-based detector calibration routine allows these detectors to be used in PET systems.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/instrumentación , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/métodos , Calibración
2.
Phys Med Biol ; 68(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37863101

RESUMEN

Objective.Prompt-gamma imaging encompasses several approaches to the online monitoring of the beam range or deposited dose distribution in proton therapy. We test one of the imaging techniques - a coded mask approach - both experimentally and via simulations.Approach.Two imaging setups have been investigated experimentally. Each of them comprised a structured tungsten collimator in the form of a modified uniformly redundant array mask and a LYSO:Ce scintillation detector of fine granularity. The setups differed in detector dimensions and operation mode (1D or 2D imaging). A series of measurements with radioactive sources have been conducted, testing the performance of the setups for near-field gamma imaging. Additionally, Monte Carlo simulations of a larger setup of the same type were conducted, investigating its performance with a realistic gamma source distribution occurring during proton therapy.Main results.The images of point-like sources reconstructed from two small-scale prototypes' data using the maximum-likelihood expectation maximisation algorithm constitute the experimental proof of principle for the near-field coded-mask imaging modality, both in the 1D and the 2D mode. Their precision allowed us to calibrate out certain systematic offsets appearing due to the limited alignment accuracy of setup elements. The simulation of the full-scale setup yielded a mean distal falloff retrieval precision of 0.72 mm in the studies for beam energy range 89.5-107.9 MeV and with 1 × 108protons (a typical number for distal spots). The implemented algorithm of image reconstruction is relatively fast-a typical procedure needs several seconds.Significance.Coded-mask imaging appears a valid option for proton therapy monitoring. The results of simulations let us conclude that the proposed full-scale setup is competitive with the knife-edge-shaped and the multi-parallel slit cameras investigated by other groups.


Asunto(s)
Terapia de Protones , Terapia de Protones/métodos , Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Protones , Fantasmas de Imagen , Método de Montecarlo
3.
Phys Imaging Radiat Oncol ; 17: 13-19, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33898772

RESUMEN

BACKGROUND AND PURPOSE: The restricted bore diameter of current simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) systems can be an impediment to achieving similar patient positioning during PET/MRI planning and radiotherapy. Our goal was to evaluate the B1 transmit (B1 +) uniformity, B1 + efficiency, and specific absorption rate (SAR) of a novel radiofrequency (RF) body coil design, in which RF shielded PET detectors were integrated with the specific aim of enabling a wide-bore PET/MRI system. MATERIALS AND METHODS: We designed and constructed a wide-bore PET/MRI RF body coil to be integrated with a clinical MRI system. To increase its inner bore diameter, the PET detectors were positioned between the conductors and the RF shield of the RF body coil. Simulations and experiments with phantoms and human volunteers were performed to compare the B1 + uniformity, B1 + efficiency, and SAR between our design and the clinical body coil. RESULTS: In the simulations, our design achieved nearly the same B1 + field uniformity as the clinical body coil and an almost identical SAR distribution. The uniformity findings were confirmed by the physical experiments. The B1 + efficiency was 38% lower compared to the clinical body coil. CONCLUSIONS: To achieve wide-bore PET/MRI, it is possible to integrate shielding for PET detectors between the body coil conductors and the RF shield without compromising MRI performance. Reduced B1 + efficiency may be compensated by adding a second RF amplifier. This finding may facilitate the application of simultaneous whole-body PET/MRI in radiotherapy planning.

4.
EJNMMI Phys ; 8(1): 30, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761038

RESUMEN

BACKGROUND: Aiming to measure the difference in arrival times of two coincident γ-photons with an accuracy in the order of 200ps, time-of-flight positron emission tomography systems commonly employ silicon photomultipliers (SiPMs) and high-resolution digitization electronics, application specific integrated circuits (ASICs). This work evaluates the performance of the TOFPET2 ASIC, released by PETsys Electronics S.A. in 2017, dependent on its configuration parameters in multi-channel coincidence measurements. METHODS: SiPM arrays fabricated by different vendors (KETEK, SensL, Hamamatsu, Broadcom) were tested in combination with the ASIC. Scintillator arrays featuring different reflector designs and different configurations of the TOFPET2 ASIC software parameters were evaluated. The benchtop setup used is provided with the TOFPET2 ASIC evaluation kit by PETsys Electronics S.A. RESULTS: Compared to existing studies featuring the TOFPET2 ASIC, multi-channel performance results dependent on a larger set of ASIC configuration parameters were obtained that have not been reported to this extend so far. The ASIC shows promising CRTs down to 219.9 ps in combination with two Hamamatsu S14161-3050-HS-08 SiPM arrays (128 channels read out, energy resolution 13.08%) and 216.1 ps in combination with two Broadcom AFBR-S4N44P643S SiPM arrays (32 channels read out, energy resolution 9.46%). The length of the trigger delay of the dark count suppression scheme has an impact on the ASIC performance and can be configured to further improve the coincidence resolution time. The integrator gain configuration has been investigated and allows an absolute improvement of the energy resolution by up to 1% at the cost of the linearity of the energy spectrum. CONCLUSION: Measuring up to the time-of-flight performance of state-of-the-art positron emission tomography (ToF-PET) systems while providing a uniform and stable readout for multiple channels at the same time, the TOFPET2 ASIC is treated as promising candidate for the integration in future ToF-PET systems.

5.
Med Phys ; 45(4): 1415-1424, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29363769

RESUMEN

PURPOSE: In order to integrate electronic devices into a magnetic resonance imaging (MRI) scanner, shielding of the electronics with respect to the radio frequency (RF) transmit and receive system of the MRI scanner is required. Furthermore, MRI uses time-varying low-frequency magnetic fields for spatial encoding, i.e., the gradient magnetic fields. Time-varying magnetic fields induce eddy currents in all conductive elements. The eddy currents result in opposing magnetic fields, which can cause distortions of the magnetic resonance (MR) image. As shielding of lower frequencies is not feasible in this respect, an ideal shielding element should be transparent for gradient magnetic fields while providing a high RF shielding effectiveness. Furthermore, it should offer a low susceptibility to prevent distortion of the main magnetic field of the MRI. In this work, we characterize the aforesaid shielding parameters of different shielding samples. METHODS: We developed a nuclear magnetic resonance (NMR) probe to measure the magnetic fields to quantify the field distortions time-resolvedly. The relative distortion was introduced as a proportionality constant relating the eddy-current-inducing field changes and the field distortions. The relative distortion was measured in the frequency range from 0 to 10 kHz for all shielding samples using the NMR probe. We characterized the shielding effectiveness of the samples in the frequency range from 1 to 150 MHz using a network analyzer. We conducted all measurements with three different materials, two carbon fiber composites and copper, each in various thicknesses. RESULTS: The relative distortion of the magnetic fields induced by the carbon fiber composites samples was at least a factor of seven lower than the copper sample. A linear dependency on the sample thickness was measured for the main field distortion, the relative distortion and the shielding effectiveness. The relative distortion was roughly independent of the gradient frequency contrary to the shielding effectiveness, highly depending on the RF frequency. CONCLUSIONS: We presented a very sensitive method to characterize the distortion of the main field distortion and the gradient transparency using an NMR probe. We analyzed different shielding materials regarding the main field distortion, the gradient transparency, and the shielding effectiveness. From the tested materials, we identified a carbon fiber composite with the lowest distortion on the MRI.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Diseño de Equipo , Campos Magnéticos , Fantasmas de Imagen
6.
Biomed Phys Eng Express ; 4(6): 065027, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30675384

RESUMEN

The Hyperion IID PET insert is the first scanner using fully digital silicon photomultipliers for simultaneous PET/MR imaging of small animals up to rabbit size. In this work, we evaluate the PET performance based on the National Eletrical Manufacturers Association (NEMA) NU 4-2008 standard, whose standardized measurement protocols allow comparison of different small-animal PET scanners. The Hyperion IID small-animal PET/MR insert comprises three rings of 20 detector stacks with pixelated scintillator arrays with a crystal pitch of 1 mm, read out with digital silicon photomultipliers. The scanner has a large ring diameter of 209.6 mm and an axial field of view of 96.7 mm. We evaluated the spatial resolution, energy resolution, time resolution and sensitivity by scanning a 22Na point source. The count rates and scatter fractions were measured for a wide range of 18F activity inside a mouse-sized scatter phantom. We evaluated the image quality using the mouse-sized image quality phantom specified in the NEMA NU4 standard, filled with 18F. Additionally, we verified the in-vivo imaging capabilities by performing a simultaneous PET/MRI scan of a mouse injected with 18F-FDG. We processed all measurement data with an energy window of 250 keV to 625 keV and a coincidence time window of 2 ns. The filtered-backprojection reconstruction of the point source has a full width at half maximum (FWHM) of 1.7 mm near the isocenter and degrades to 2.5 mm at a radial distance of 50 mm. The scanner's average energy resolution is 12.7% (ΔE/E FWHM) and the coincidence resolution time is 609 ps. The peak absolute sensitivity is 4.0% and the true and noise-equivalent count rates reach their peak at an activity of 46 MBq with 483 kcps and 407 kcps, respectively, with a scatter fraction of 13%. The iterative reconstruction of the image quality phantom has a uniformity of 3.7%, and recovery coefficients from 0.29, 0.91 and 0.94 for rod diameters of 1 mm, 3 mm and 5 mm, respectively. After application of scatter and attenuation corrections, the air- and water-filled cold regions have spill-over ratios of 6.3% and 5.4%, respectively. The Hyperion IID PET/MR insert provides state-of-the-art PET performance while enabling simultaneous PET/MRI acquisition of small animals up to rabbit size.

7.
Phys Med Biol ; 61(7): 2851-78, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26987774

RESUMEN

Hyperion-II(D) is a positron emission tomography (PET) insert which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. To read out the scintillation light of the employed lutetium yttrium orthosilicate crystal arrays with a pitch of 1 mm and 12 mm in height, digital silicon photomultipliers (DPC 3200-22, Philips Digital Photon Counting) (DPC) are used. The basic PET performance in terms of energy resolution, coincidence resolution time (CRT) and sensitivity as a function of the operating parameters, such as the operating temperature, the applied overvoltage, activity and configuration parameters of the DPCs, has been evaluated at system level. The measured energy resolution did not show a large dependency on the selected parameters and is in the range of 12.4%-12.9% for low activity, degrading to ∼13.6% at an activity of ∼100 MBq. The CRT strongly depends on the selected trigger scheme (trig) of the DPCs, and we measured approximately 260 ps, 440 ps, 550 ps and 1300 ps for trig 1-4, respectively. The trues sensitivity for a NEMA NU 4 mouse-sized scatter phantom with a 70 mm long tube of activity was dependent on the operating parameters and was determined to be 0.4%-1.4% at low activity. The random fraction stayed below 5% at activity up to 100 MBq and the scatter fraction was evaluated as ∼6% for an energy window of 411 keV-561 keV and ∼16% for 250 keV-625 keV. Furthermore, we performed imaging experiments using a mouse-sized hot-rod phantom and a large rabbit-sized phantom. In 2D slices of the reconstructed mouse-sized hot-rod phantom (∅ = 28 mm), the rods were distinguishable from each other down to a rod size of 0.8 mm. There was no benefit from the better CRT of trig 1 over trig 3, where in the larger rabbit-sized phantom (∅ = 114 mm) we were able to show a clear improvement in image quality using the time-of-flight information. The findings will allow system architects-aiming at a similar detector design using DPCs-to make predictions about the design requirements and the performance that can be expected.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Fotones , Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Imagen por Resonancia Magnética/instrumentación , Ratones , Imagen Multimodal/instrumentación , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Conejos
8.
Biomed Phys Eng Express ; 2(1): 015010, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28458919

RESUMEN

Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.

9.
IEEE Trans Biomed Eng ; 63(2): 316-27, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26186766

RESUMEN

In modern positron emission tomography (PET) readout architectures, the position and energy estimation of scintillation events (singles) and the detection of coincident events (coincidences) are typically carried out on highly integrated, programmable printed circuit boards. The implementation of advanced singles and coincidence processing (SCP) algorithms for these architectures is often limited by the strict constraints of hardware-based data processing. In this paper, we present a software-based data acquisition and processing architecture (DAPA) that offers a high degree of flexibility for advanced SCP algorithms through relaxed real-time constraints and an easily extendible data processing framework. The DAPA is designed to acquire detector raw data from independent (but synchronized) detector modules and process the data for singles and coincidences in real-time using a center-of-gravity (COG)-based, a least-squares (LS)-based, or a maximum-likelihood (ML)-based crystal position and energy estimation approach (CPEEA). To test the DAPA, we adapted it to a preclinical PET detector that outputs detector raw data from 60 independent digital silicon photomultiplier (dSiPM)-based detector stacks and evaluated it with a [(18)F]-fluorodeoxyglucose-filled hot-rod phantom. The DAPA is highly reliable with less than 0.1% of all detector raw data lost or corrupted. For high validation thresholds (37.1 ± 12.8 photons per pixel) of the dSiPM detector tiles, the DAPA is real time capable up to 55 MBq for the COG-based CPEEA, up to 31 MBq for the LS-based CPEEA, and up to 28 MBq for the ML-based CPEEA. Compared to the COG-based CPEEA, the rods in the image reconstruction of the hot-rod phantom are only slightly better separable and less blurred for the LS- and ML-based CPEEA. While the coincidence time resolution (∼ 500 ps) and energy resolution (∼12.3%) are comparable for all three CPEEA, the system sensitivity is up to 2.5 × higher for the LS- and ML-based CPEEA.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Humanos , Modelos Teóricos , Fantasmas de Imagen
10.
Phys Med Biol ; 60(18): 7045-67, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26309149

RESUMEN

We evaluate the MR compatibility of the Hyperion-II(D) positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.6 mm was equipped with LYSO scintillators with a pitch of 4 mm which were read out in a one-to-one coupling scheme by sensor tiles composed of digital silicon photomultipliers from Philips Digital Photon Counting (DPC 3200-22). The PET performance degradation (energy resolution and coincidence resolution time (CRT)) was evaluated during simultaneous operation of the MRI scanner. We used clinically motivated imaging sequences as well as synthetic gradient stress test sequences. Without activity of the MRI scanner, we measured for trigger scheme 1 (first photon trigger) an energy resolution of 11.4% and a CRT of 213 ps for a narrow energy (NE) window using five (22)Na point-like sources. When applying the synthetic gradient sequences, we found worst-case relative degradations of the energy resolution by 5.1% and of the CRT by 33.9%. After identifying the origin of the degradations and implementing a fix to the read-out hardware, the same evaluation revealed no degradation of the PET performance anymore even when the most demanding gradient stress tests were applied. The PET performance of the insert was initially evaluated using the point sources, a high-activity phantom and hot-rod phantoms in order to assess the spatial resolution. Trigger schemes 2-4 delivered an energy resolution of 11.4% as well and CRTs of 279 ps, 333 ps and 557 ps for the NE window, respectively. An isocenter sensitivity of 0.41% using the NE window and 0.71% with a wide energy window was measured. Using a hot-rod phantom, a spatial resolution in the order of 2 mm was demonstrated and the benefit of time-of-flight PET was shown with a larger rabbit-sized phantom. In conclusion, the Hyperion architecture is an interesting platform for clinically driven hybrid PET/MRI systems.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen Multimodal/instrumentación , Imagen Multimodal/métodos , Fotones , Conejos , Silicio/química
11.
IEEE Trans Med Imaging ; 34(11): 2258-70, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25935031

RESUMEN

Combining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners. With three exchangeable RF coils, the hybrid field of view has a maximum size of 160 mm × 96.6 mm (transaxial × axial). 0.1 ppm volume-root-mean-square B 0-homogeneity is kept within a spherical diameter of 96 mm (automatic volume shimming). Depending on the coil, MRI SNR is decreased by 13% or 5% by the PET system. PET count rates, energy resolution of 12.6% FWHM, and spatial resolution of 0.73 mm (3) (isometric volume resolution at isocenter) are not affected by applied MRI sequences. PET time resolution of 565 ps (FWHM) degraded by 6 ps during an EPI sequence. Timing-optimized settings yielded 260 ps time resolution. PET and MR images of a hot-rod phantom show no visible differences when the other modality was in operation and both resolve 0.8-mm rods. Versatility of the insert is shown by successfully combining multi-nuclei MRI ((1)H/(19)F) with simultaneously measured PET ((18)F-FDG). A longitudinal study of a tumor-bearing mouse verifies the operability, stability, and in vivo capabilities of the system. Cardiac- and respiratory-gated PET/MRI motion-capturing (CINE) images of the mouse heart demonstrate the advantage of simultaneous acquisition for temporal and spatial image registration.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Diseño de Equipo , Femenino , Fluorodesoxiglucosa F18 , Ratones , Ratones Endogámicos BALB C , Imagen Multimodal , Fantasmas de Imagen
12.
Phys Med Biol ; 59(17): 5119-39, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25122591

RESUMEN

The combination of Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) into a single device is being considered a promising tool for molecular imaging as it combines the high sensitivity of PET with the functional and anatomical images of MRI. For highest performance, a scalable, MR compatible detector architecture with a small form factor is needed, targeting at excellent PET signal-to-noise ratios and time-of-flight information. Therefore it is desirable to use silicon photo multipliers and to digitize their signals directly in the detector modules inside the MRI bore. A preclinical PET/RF insert for clinical MRI scanner was built to demonstrate a new architecture and to study the interactions between the two modalities.The disturbance of the MRI's static magnetic field stays below 2 ppm peak-to-peak within a diameter of 56 mm (90 mm using standard automatic volume shimming). MRI SNR is decreased by 14%, RF artefacts (dotted lines) are only visible in sequences with very low SNR. Ghosting artefacts are visible to the eye in about 26% of the EPI images, severe ghosting only in 7.6%. Eddy-current related heating effects during long EPI sequences are noticeable but with low influence of 2% on the coincidences count rate. The time resolution of 2.5 ns, the energy resolution of 29.7% and the volumetric spatial resolution of 1.8 mm(3) in the PET isocentre stay unaffected during MRI operation. Phantom studies show no signs of other artefacts or distortion in both modalities. A living rat was simultaneously imaged after the injection with (18)F-Fluorodeoxyglucose (FDG) proving the in vivo capabilities of the system.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Silicio/química , Animales , Imagen por Resonancia Magnética/instrumentación , Imagen Multimodal/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Ratas , Relación Señal-Ruido
19.
Nucl Instrum Methods Phys Res A ; 734(Pt B): 116-121, 2014 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-25843999

RESUMEN

In this work, we present an initial MR-compatibility study performed with the world's first preclinical PET/MR insert based on fully digital silicon photo multipliers (dSiPM). The PET insert allows simultaneous data acquisition of both imaging modalities and thus enables the true potential of hybrid PET/MRI. Since the PET insert has the potential to interfere with all of the MRI's subsystems (strong magnet, gradients system, radio frequency (RF) system) and vice versa, interference studies on both imaging systems are of great importance to ensure an undisturbed operation. As a starting point to understand the interference, we performed signal-to-noise ratio (SNR) measurements as well as dedicated noise scans on the MRI side to characterize the influence of the PET electronics on the MR receive chain. Furthermore, improvements of sub-components' shielding of the PET system are implemented and tested inside the MRI. To study the influence of the MRI on the PET performance, we conducted highly demanding stress tests with gradient and RF dominated MR sequences. These stress tests unveil a sensitivity of the PET's electronics to gradient switching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...