Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancer Res ; 83(12): 2077-2089, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934744

RESUMEN

Fluorescence-guided surgery is set to play a pivotal role in the intraoperative management of pediatric tumors. Shortwave infrared imaging (SWIR) has advantages over conventional near-infrared I (NIR-I) imaging with reduced tissue scattering and autofluorescence. Here, two NIR-I dyes (IRDye800CW and IR12), with long tails emitting in the SWIR range, were conjugated with a clinical-grade anti-GD2 monoclonal antibody (dinutuximab-beta) to compare NIR-I and SWIR imaging for neuroblastoma surgery. A first-of-its-kind multispectral NIR-I/SWIR fluorescence imaging device was constructed to allow an objective comparison between the two imaging windows. Conjugates were first characterized in vitro. Tissue-mimicking phantoms, imaging specimens of known geometric and material composition, were used to assess the sensitivity and depth penetration of the NIR-I/SWIR device, showing a minimum detectable volume of ∼0.9 mm3 and depth penetration up to 3 mm. In vivo, fluorescence imaging using the NIR-I/SWIR device showed a high tumor-to-background ratio (TBR) for both dyes, with anti-GD2-IR800 being significantly brighter than anti-GD2-IR12. Crucially, the system enabled higher TBR at SWIR wavelengths than at NIR-I wavelengths, verifying SWIR imaging enables high-contrast delineation of tumor margins. This work demonstrates that by combining the high specificity of anti-GD2 antibodies with the availability and translatability of existing NIR-I dyes, along with the advantages of SWIR in terms of depth and tumor signal-to-background ratio, GD2-targeted NIR-I/SWIR-guided surgery could improve the treatment of patients with neuroblastoma, warranting investigation in future clinical trials. SIGNIFICANCE: Multispectral near-infrared I/shortwave infrared fluorescence imaging is a versatile system enabling high tumor-to-background signal for safer and more complete resection of pediatric tumors during surgery.


Asunto(s)
Antineoplásicos , Neuroblastoma , Niño , Humanos , Imagen Óptica/métodos , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/cirugía , Fantasmas de Imagen , Colorantes , Colorantes Fluorescentes
2.
Br J Cancer ; 128(2): 245-254, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36352028

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is a therapeutic target to which HER2/HER3 activation may contribute resistance. This Phase I/II study examined the toxicity and efficacy of high-dose pulsed AZD8931, an EGFR/HER2/HER3 inhibitor, combined with chemotherapy, in metastatic colorectal cancer (CRC). METHODS: Treatment-naive patients received 4-day pulses of AZD8931 with irinotecan/5-FU (FOLFIRI) in a Phase I/II single-arm trial. Primary endpoint for Phase I was dose limiting toxicity (DLT); for Phase II best overall response. Samples were analysed for pharmacokinetics, EGFR dimers in circulating exosomes and Comet assay quantitating DNA damage. RESULTS: Eighteen patients received FOLFIRI and AZD8931. At 160 mg bd, 1 patient experienced G3 DLT; 160 mg bd was used for cohort expansion. No grade 5 adverse events (AE) reported. Seven (39%) and 1 (6%) patients experienced grade 3 and grade 4 AEs, respectively. Of 12 patients receiving 160 mg bd, best overall response rate was 25%, median PFS and OS were 8.7 and 21.2 months, respectively. A reduction in circulating HER2/3 dimer in the two responding patients after 12 weeks treatment was observed. CONCLUSIONS: The combination of pulsed high-dose AZD8931 with FOLFIRI has acceptable toxicity. Further studies of TKI sequencing may establish a role for pulsed use of such agents rather than continuous exposure. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number: NCT01862003.


Asunto(s)
Neoplasias Colorrectales , Receptor ErbB-3 , Humanos , Receptor ErbB-3/metabolismo , Transducción de Señal , Quinazolinas/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inducido químicamente , Fluorouracilo , Leucovorina/efectos adversos , Camptotecina , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo
3.
Elife ; 112022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562609

RESUMEN

Background: Advanced head and neck squamous cell carcinoma (HNSCC) is associated with a poor prognosis, and biomarkers that predict response to treatment are highly desirable. The primary aim was to predict progression-free survival (PFS) with a multivariate risk prediction model. Methods: Experimental covariates were derived from blood samples of 56 HNSCC patients which were prospectively obtained within a Phase 2 clinical trial (NCT02633800) at baseline and after the first treatment cycle of combined platinum-based chemotherapy with cetuximab treatment. Clinical and experimental covariates were selected by Bayesian multivariate regression to form risk scores to predict PFS. Results: A 'baseline' and a 'combined' risk prediction model were generated, each of which featuring clinical and experimental covariates. The baseline risk signature has three covariates and was strongly driven by baseline percentage of CD33+CD14+HLADRhigh monocytes. The combined signature has six covariates, also featuring baseline CD33+CD14+HLADRhigh monocytes but is strongly driven by on-treatment relative change of CD8+ central memory T cells percentages. The combined model has a higher predictive power than the baseline model and was successfully validated to predict therapeutic response in an independent cohort of nine patients from an additional Phase 2 trial (NCT03494322) assessing the addition of avelumab to cetuximab treatment in HNSCC. We identified tissue counterparts for the immune cells driving the models, using imaging mass cytometry, that specifically colocalized at the tissue level and correlated with outcome. Conclusions: This immune-based combined multimodality signature, obtained through longitudinal peripheral blood monitoring and validated in an independent cohort, presents a novel means of predicting response early on during the treatment course. Funding: Daiichi Sankyo Inc, Cancer Research UK, EU IMI2 IMMUCAN, UK Medical Research Council, European Research Council (335326), Merck Serono. Cancer Research Institute, National Institute for Health Research, Guy's and St Thomas' NHS Foundation Trust and The Institute of Cancer Research. Clinical trial number: NCT02633800.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Cetuximab/uso terapéutico , Supervivencia sin Progresión , Teorema de Bayes , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
4.
Mol Cancer Ther ; 21(4): 667-676, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086953

RESUMEN

Prostate cancer remains a major cause of male mortality. Genetic alteration of the PI3K/AKT/mTOR pathway is one of the key events in tumor development and progression in prostate cancer, with inactivation of the PTEN tumor suppressor being very common in this cancer type. Extensive evaluation has been performed on the therapeutic potential of PI3K/AKT/mTOR inhibitors and the resistance mechanisms arising in patients with PTEN-mutant background. However, in patients with a PTEN wild-type phenotype, PI3K/AKT/mTOR inhibitors have not demonstrated efficacy, and this remains an area of clinical unmet need. In this study, we have investigated the response of PTEN wild-type prostate cancer cell lines to the dual PI3K/mTOR inhibitor DS-7423 alone or in combination with HER2 inhibitors or mGluR1 inhibitors. Upon treatment with the dual PI3K/mTOR inhibitor DS-7423, PTEN wild-type prostate cancer CWR22/22RV1 cells upregulate expression of the proteins PSMA, mGluR1, and the tyrosine kinase receptor HER2, while PTEN-mutant LNCaP cells upregulate androgen receptor and HER3. PSMA, mGluR1, and HER2 exert control over one another in a positive feedback loop that allows cells to overcome treatment with DS-7423. Concomitant targeting of PI3K/mTOR with either HER2 or mGluR1 inhibitors results in decreased cell survival and tumor growth in xenograft studies. Our results suggest a novel therapeutic possibility for patients with PTEN wild-type PI3K/AKT-mutant prostate cancer based in the combination of PI3K/mTOR blockade with HER2 or mGluR1 inhibitors.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Neoplasias de la Próstata , Línea Celular Tumoral , Proliferación Celular , Humanos , Inhibidores mTOR , Masculino , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico , Serina-Treonina Quinasas TOR/metabolismo
5.
Nanoscale ; 13(44): 18520-18535, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34730152

RESUMEN

In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing 125I-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Preparaciones Farmacéuticas , Animales , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Distribución Tisular
6.
Biochem J ; 477(17): 3329-3347, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32815546

RESUMEN

Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.


Asunto(s)
Inhibidores de Proteínas Quinasas , Receptor ErbB-3 , Regulación Alostérica , Animales , Células CHO , Cricetulus , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Prueba de Estudio Conceptual , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/química , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
7.
Cancer Discov ; 10(5): 674-687, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32213539

RESUMEN

Amplification of and oncogenic mutations in ERBB2, the gene encoding the HER2 receptor tyrosine kinase, promote receptor hyperactivation and tumor growth. Here we demonstrate that HER2 ubiquitination and internalization, rather than its overexpression, are key mechanisms underlying endocytosis and consequent efficacy of the anti-HER2 antibody-drug conjugates (ADC) ado-trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) in lung cancer cell lines and patient-derived xenograft models. These data translated into a 51% response rate in a clinical trial of T-DM1 in 49 patients with ERBB2-amplified or -mutant lung cancers. We show that cotreatment with irreversible pan-HER inhibitors enhances receptor ubiquitination and consequent ADC internalization and efficacy. We also demonstrate that ADC switching to T-DXd, which harbors a different cytotoxic payload, achieves durable responses in a patient with lung cancer and corresponding xenograft model developing resistance to T-DM1. Our findings may help guide future clinical trials and expand the field of ADC as cancer therapy. SIGNIFICANCE: T-DM1 is clinically effective in lung cancers with amplification of or mutations in ERBB2. This activity is enhanced by cotreatment with irreversible pan-HER inhibitors, or ADC switching to T-DXd. These results may help address unmet needs of patients with HER2-activated tumors and no approved targeted therapy.See related commentary by Rolfo and Russo, p. 643.This article is highlighted in the In This Issue feature, p. 627.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Receptor ErbB-2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación
8.
J Natl Cancer Inst ; 112(9): 944-954, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31851321

RESUMEN

BACKGROUND: The phase III MRC COIN trial showed no statistically significant benefit from adding the EGFR-target cetuximab to oxaliplatin-based chemotherapy in first-line treatment of advanced colorectal cancer. This study exploits additional information on HER2-HER3 dimerization to achieve patient stratification and reveal previously hidden subgroups of patients who had differing disease progression and treatment response. METHODS: HER2-HER3 dimerization was quantified by fluorescence lifetime imaging microscopy in primary tumor samples from 550 COIN trial patients receiving oxaliplatin and fluoropyrimidine chemotherapy with or without cetuximab. Bayesian latent class analysis and covariate reduction was performed to analyze the effects of HER2-HER3 dimer, RAS mutation, and cetuximab on progression-free survival and overall survival (OS). All statistical tests were two-sided. RESULTS: Latent class analysis on a cohort of 398 patients revealed two patient subclasses with differing prognoses (median OS = 1624 days [95% confidence interval [CI] = 1466 to 1816 days] vs 461 days [95% CI = 431 to 504 days]): Class 1 (15.6%) showed a benefit from cetuximab in OS (hazard ratio = 0.43, 95% CI = 0.25 to 0.76, P = .004). Class 2 showed an association of increased HER2-HER3 with better OS (hazard ratio = 0.64, 95% CI = 0.44 to 0.94, P = .02). A class prediction signature was formed and tested on an independent validation cohort (n = 152) validating the prognostic utility of the dimer assay. Similar subclasses were also discovered in full trial dataset (n = 1630) based on 10 baseline clinicopathological and genetic covariates. CONCLUSIONS: Our work suggests that the combined use of HER dimer imaging and conventional mutation analyses will be able to identify a small subclass of patients (>10%) who will have better prognosis following chemotherapy. A larger prospective cohort will be required to confirm its utility in predicting the outcome of anti-EGFR treatment.


Asunto(s)
Adenocarcinoma/diagnóstico , Neoplasias Colorrectales/diagnóstico , Transferencia Resonante de Energía de Fluorescencia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/terapia , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Teorema de Bayes , Capecitabina/uso terapéutico , Estudios de Cohortes , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/terapia , Femenino , Humanos , Análisis de Clases Latentes , Masculino , Microscopía/métodos , Persona de Mediana Edad , Oxaloacetatos/uso terapéutico , Pronóstico , Multimerización de Proteína , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Receptor ErbB-2/análisis , Receptor ErbB-3/análisis , Análisis de Matrices Tisulares , Resultado del Tratamiento
9.
Cell Rep ; 24(3): 630-641, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30021161

RESUMEN

The immunosuppressive transmembrane protein PD-L1 was shown to traffic via the multivesicular body (MVB) and to be released on exosomes. A high-content siRNA screen identified the endosomal sorting complexes required for transport (ESCRT)-associated protein ALIX as a regulator of both EGFR activity and PD-L1 surface presentation in basal-like breast cancer (BLBC) cells. ALIX depletion results in prolonged and enhanced stimulation-induced EGFR activity as well as defective PD-L1 trafficking through the MVB, reduced exosomal secretion, and its redistribution to the cell surface. Increased surface PD-L1 expression confers an EGFR-dependent immunosuppressive phenotype on ALIX-depleted cells. An inverse association between ALIX and PD-L1 expression was observed in human breast cancer tissues, while an immunocompetent mouse model of breast cancer revealed that ALIX-deficient tumors are larger and show an increased immunosuppressive environment. Our data suggest that ALIX modulates immunosuppression through regulation of PD-L1 and EGFR and may, therefore, present a diagnostic and therapeutic target for BLBC.


Asunto(s)
Antígeno B7-H1/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores ErbB/metabolismo , Terapia de Inmunosupresión , Animales , Técnicas Biosensibles , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Microambiente Celular , Exosomas/metabolismo , Exosomas/ultraestructura , Femenino , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Ratones Endogámicos BALB C
10.
Elife ; 72018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29712619

RESUMEN

While targeted therapy against HER2 is an effective first-line treatment in HER2+ breast cancer, acquired resistance remains a clinical challenge. The pseudokinase HER3, heterodimerisation partner of HER2, is widely implicated in the resistance to HER2-mediated therapy. Here, we show that lapatinib, an ATP-competitive inhibitor of HER2, is able to induce proliferation cooperatively with the HER3 ligand neuregulin. This counterintuitive synergy between inhibitor and growth factor depends on their ability to promote atypical HER2-HER3 heterodimerisation. By stabilising a particular HER2 conformer, lapatinib drives HER2-HER3 kinase domain heterocomplex formation. This dimer exists in a head-to-head orientation distinct from the canonical asymmetric active dimer. The associated clustering observed for these dimers predisposes to neuregulin responses, affording a proliferative outcome. Our findings provide mechanistic insights into the liabilities involved in targeting kinases with ATP-competitive inhibitors and highlight the complex role of protein conformation in acquired resistance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Lapatinib/farmacología , Neurregulina-1/metabolismo , Multimerización de Proteína , Receptor ErbB-2/química , Receptor ErbB-3/química , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Fosforilación , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
11.
PLoS One ; 12(1): e0170798, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28141869

RESUMEN

Advanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors (TKIs) have high response rates in patients with activating EGFR mutations, but acquired resistance is inevitable. Acquisition of the EGFR T790M mutation causes over 50% of resistance; MET amplification is also common. Preclinical data suggest synergy between MET and EGFR inhibitors. We hypothesized that EGFR-MET dimerization determines response to MET inhibition, depending on EGFR mutation status, independently of MET copy number. We tested this hypothesis by generating isogenic cell lines from NCI-H1975 cells, which co-express L858R and T790M EGFR mutations, namely H1975L858R/T790M (EGFR TKI resistant); H1975L858R (sensitized) and H1975WT (wild-type). We assessed cell proliferation in vitro and tumor growth/stroma formation in derived xenograft models in response to a MET TKI (SGX523) and correlated with EGFR-MET dimerization assessed by Förster Resonance Energy Transfer (FRET). SGX523 significantly reduced H1975L858R/T790M cell proliferation, xenograft tumor growth and decreased ERK phosphorylation. The same was not seen in H1975L858R or H1975WT cells. SGX523 only reduced stroma formation in H1975L858R. SGX523 reduced EGFR-MET dimerization in H1975L858R/T790M but induced dimer formation in H1975L858R with no effect in H1975WT. Our data suggests that MET inhibition by SGX523 and EGFR-MET heterodimerisation are determined by EGFR genotype. As tumor behaviour is modulated by this interaction, this could determine treatment efficacy.


Asunto(s)
Adenocarcinoma/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Adenocarcinoma/enzimología , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Reproducibilidad de los Resultados
12.
Oncotarget ; 8(3): 4277-4288, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28032592

RESUMEN

The EGFR inhibitor cetuximab is approved for the treatment of colorectal cancer. However, both innate and acquired resistance mechanisms, including compensatory feedback loops, limit its efficacy. Nevertheless, the emergence of these feedback loops has remained largely unexplored to date. Here, we showed feedback upregulation of HER3 and induction of HER3 phosphorylation after cetuximab treatment in colon cancer cells. We also showed that this upregulation occurs, at least partly, through AKT inhibition. Together with this, we observed increased HER2:HER3 dimerization upon cetuximab treatment. Interestingly, lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, blocked the increase of cetuximab-induced HER3 phosphorylation. Additionally, we showed that upon HER3 knockdown, cetuximab combined with lapatinib was able to decrease cell viability compared to HER3 expressing cells. These results suggest the existence of a cetuximab-induced feedback HER3 activation that could potentially result in reduced cetuximab efficacy in colorectal cancer patients. Taken together, we provide evidence of the limited effectiveness of cetuximab monotherapy compared to rational combinations.


Asunto(s)
Cetuximab/farmacología , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon , Resistencia a Antineoplásicos , Retroalimentación Fisiológica , Humanos , Lapatinib , Fosforilación , Multimerización de Proteína , Receptor ErbB-3/genética , Regulación hacia Arriba
13.
Oncotarget ; 7(32): 51012-51026, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27618787

RESUMEN

Overexpression of HER2 is an important prognostic marker, and the only predictive biomarker of response to HER2-targeted therapies in invasive breast cancer. HER2-HER3 dimer has been shown to drive proliferation and tumor progression, and targeting of this dimer with pertuzumab alongside chemotherapy and trastuzumab, has shown significant clinical utility. The purpose of this study was to accurately quantify HER2-HER3 dimerisation in formalin fixed paraffin embedded (FFPE) breast cancer tissue as a novel prognostic biomarker.FFPE tissues were obtained from patients included in the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) study. HER2-HER3 dimerisation was quantified using an improved fluorescence lifetime imaging microscopy (FLIM) histology-based analysis. Analysis of 131 tissue microarray cores demonstrated that the extent of HER2-HER3 dimer formation as measured by Förster Resonance Energy Transfer (FRET) determined through FLIM predicts the likelihood of metastatic relapse up to 10 years after surgery (hazard ratio 3.91 (1.61-9.5), p = 0.003) independently of HER2 expression, in a multivariate model. Interestingly there was no correlation between the level of HER2 protein expressed and HER2-HER3 heterodimer formation. We used a mathematical model that takes into account the complex interactions in a network of all four HER proteins to explain this counterintuitive finding.Future utility of this technique may highlight a group of patients who do not overexpress HER2 protein but are nevertheless dependent on the HER2-HER3 heterodimer as driver of proliferation. This assay could, if validated in a group of patients treated with, for instance pertuzumab, be used as a predictive biomarker to predict for response to such targeted therapies.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Mama/patología , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Receptor ErbB-2/análisis , Receptor ErbB-3/análisis , Adulto , Anciano , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Dimerización , Femenino , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Modelos Teóricos , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Pronóstico , Modelos de Riesgos Proporcionales , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo
14.
J Nucl Med ; 57(5): 765-70, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26635342

RESUMEN

UNLABELLED: Locoregional recurrence of breast cancer poses significant clinical problems because of frequent inoperability once the chest wall is involved. Early detection of recurrence by molecular imaging agents against therapeutically targetable receptors, such as c-Met, would be of potential benefit. The aim of this study was to assess (18)F-AH113804, a peptide-based molecular imaging agent with high affinity for human c-Met, for the detection of early-stage locoregional recurrence in a human basal-like breast cancer model, HCC1954. METHODS: HCC1954 tumor-bearing xenograft models were established, and (18)F-AH113804 was administered. Distribution of radioactivity was determined via PET at 60 min after radiotracer injection. PET and CT images were acquired 10 d after tumor inoculation, to establish baseline distribution and uptake, and then on selected days after surgical tumor resection. CT images and caliper were used to determine the tumor volume. Radiotracer uptake was assessed by (18)F-AH113804 PET imaging. c-Met expression was assessed by immunofluorescence imaging of tumor samples and correlated with (18)F-AH113804 PET imaging results. RESULTS: Baseline uptake of (18)F-AH113804, determined in tumor-bearing animals after 10 d, was approximately 2-fold higher in the tumor than in muscle tissue or the contralateral mammary fat pad. The tumor growth rate, determined from CT images, was comparable between the animals with recurrent tumors, with detection of tumors of low volume (<10 mm(3)) only possible by day 20 after tumor resection. (18)F-AH113804 PET detected local tumor recurrence as early as 6 d after surgery in the recurrent tumor-bearing animals and exhibited significantly higher (18)F-AH113804 uptake (in comparison to mammary fatty tissue), with a target-to-background (muscle) ratio of approximately 3:1 (P < 0.01). The c-Met expression of individual resected tumor samples, determined by immunofluorescence, correlated with the respective (18)F-AH113804 imaging signals (r = 0.82, P < 0.05). CONCLUSION: (18)F-AH113804 PET provides a new diagnostic tool for the detection of c-Met-expressing primary tumor and has potential utility for the detection of locoregional recurrence from an early stage.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Recurrencia Local de Neoplasia , Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Estadificación de Neoplasias , Tomografía Computarizada por Rayos X
15.
Biophys J ; 108(5): 1013-26, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25762314

RESUMEN

Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell's proliferation potential.


Asunto(s)
Receptores ErbB/metabolismo , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Línea Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Transferencia Resonante de Energía de Fluorescencia , Humanos , Fosforilación , Estabilidad Proteica , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo
16.
Cytometry A ; 87(2): 104-18, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25523156

RESUMEN

Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5-5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry.


Asunto(s)
Receptores ErbB/análisis , Citometría de Flujo/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas Analíticas Microfluídicas/métodos , Línea Celular Tumoral , Dimerización , Factor de Crecimiento Epidérmico/análisis , Receptores ErbB/metabolismo , Citometría de Flujo/instrumentación , Técnica del Anticuerpo Fluorescente/métodos , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas/instrumentación , Fosforilación , Compuestos de Piridinio/química
17.
Biochem Soc Trans ; 42(6): 1498-505, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25399560

RESUMEN

Breast cancer heterogeneity demands that prognostic models must be biologically driven and recent clinical evidence indicates that future prognostic signatures need evaluation in the context of early compared with late metastatic risk prediction. In pre-clinical studies, we and others have shown that various protein-protein interactions, pertaining to the actin microfilament-associated proteins, ezrin and cofilin, mediate breast cancer cell migration, a prerequisite for cancer metastasis. Moreover, as a direct substrate for protein kinase Cα, ezrin has been shown to be a determinant of cancer metastasis for a variety of tumour types, besides breast cancer; and has been described as a pivotal regulator of metastasis by linking the plasma membrane to the actin cytoskeleton. In the present article, we demonstrate that our tissue imaging-derived parameters that pertain to or are a consequence of the PKC-ezrin interaction can be used for breast cancer prognostication, with inter-cohort reproducibility. The application of fluorescence lifetime imaging microscopy (FLIM) in formalin-fixed paraffin-embedded patient samples to probe protein proximity within the typically <10 nm range to address the oncological challenge of tumour heterogeneity, is discussed.


Asunto(s)
Neoplasias de la Mama/patología , Proteína Quinasa C-alfa/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Proteínas del Citoesqueleto/metabolismo , Femenino , Transferencia Resonante de Energía de Fluorescencia , Humanos , Metástasis de la Neoplasia , Fosforilación , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato , Resultado del Tratamiento
18.
PLoS One ; 9(10): e110695, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25360776

RESUMEN

We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.


Asunto(s)
Membrana Celular/metabolismo , Polarización de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Molecular/métodos , Técnicas Biosensibles , Humanos , Células MCF-7 , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rho/metabolismo
19.
Sci Signal ; 7(318): ra29, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24667376

RESUMEN

Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Transducción de Señal/fisiología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados , Western Blotting , Línea Celular Tumoral , Cetuximab , Dimerización , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Humanos , Inmunoglobulina G/farmacología , Indazoles/farmacología , Neurregulina-1/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Pirimidinas/farmacología , Receptor ErbB-3/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología
20.
PLoS One ; 7(4): e33231, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22506000

RESUMEN

Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Polarización de Fluorescencia/instrumentación , Polarización de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/química , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/química , Humanos , Proteínas Luminiscentes/química , Fotones , Dominios y Motivos de Interacción de Proteínas , Receptores CXCR4/química , Sensibilidad y Especificidad , Bibliotecas de Moléculas Pequeñas/química , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...