Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 103(10): e3769, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35620844

RESUMEN

Abundance estimation methods that combine several types of data are becoming increasingly common because they yield more accurate and precise parameter estimates and predictions than are possible from a single data source. These beneficial effects result from increasing sample size (through data pooling) and complementarity between different data types. Here, we test whether integrating mark-recapture data with passive acoustic detections into a joint likelihood improves estimates of population size in a multi-guild community. We compared the integrated model to a mark-recapture-only model using simulated data first and then using a data set of mist-net captures and acoustic recordings from an Afrotropical agroforest bird community. The integrated model with simulated data improved accuracy and precision of estimated population size and detection parameters. When applied to field data, the integrated model was able to produce, for each bird guild, ecologically plausible estimates of population size and detection parameters, with more precision compared with the mark-recapture model. Overall, our results show that adding acoustic data to mark-recapture analyses improves estimates of population size. With the increasing availability of acoustic recording devices, this data collection technique could readily be added to routine field protocols, leading to a cost-efficient improvement of traditional mark-recapture population estimation.


Asunto(s)
Acústica , Animales , Densidad de Población , Probabilidad , Tamaño de la Muestra
2.
Syst Biol ; 70(5): 976-996, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33512506

RESUMEN

The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic data sets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state-of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq data sets for phylogenetics, divergence time estimation, and inference of introgression, and we propose a strategy to optimize RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales. [Aves; incomplete lineage sorting; introgression; PE-ddRAD-Seq; phylogenomics; radiations; shearwaters; UCEs.].


Asunto(s)
Evolución Biológica , Aves , Animales , Secuencia de Bases , Aves/genética , Filogenia , Análisis de Secuencia de ADN
3.
Oecologia ; 193(2): 377-388, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32533359

RESUMEN

Rapidly increasing urbanisation requires mitigation against associated losses of biodiversity and species abundance. In urban-breeding birds, altered food availability for nestlings is thought to reduce reproductive success compared to forest populations. To compensate for shortages of preferred foods, urban parents could increase their search effort for optimal diets or provision other foods. Here, we used telemetry and faecal metabarcoding on blue tits from one urban and one forest populations to compare parental effort and comprehensively describe nestling diet. Urban parents travelled on average 30% further than those in the forest, likely to offset limited availability of high-quality nestling food (i.e. caterpillars) in cities. Metabarcoding, based on a mean number of 30 identified taxa per faeces, revealed that the diets of urban chicks were nonetheless substantially shifted to include alternative foods. While in the forest caterpillars comprised 82 ± 11% of taxa provisioned to nestlings, in the city they constituted just 44 ± 10%. Pre-fledging chick mass as well as offspring numbers were lower in urban than in forest-reared broods. Thus, at least in our comparison of two sites, the hard labour of urban parents did not fully pay off, suggesting that improved habitat management is required to support urban-breeding birds.


Asunto(s)
Pájaros Cantores , Animales , Ciudades , Dieta , Frutas , Telemetría
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(2): 256-263, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30043666

RESUMEN

Mitochondrial genetic markers have been extensively used to study the phylogenetics and phylogeography of many birds, including seabirds of the order Procellariiformes. Evidence suggests that part of the mitochondrial genome of Procellariiformes, especially albatrosses, is duplicated, but no DNA fragment covering the entire duplication has been sequenced. We sequenced the complete mitochondrial genome of a non-albatross species of Procellariiformes, Puffinus lherminieri (Audubon's shearwater) using the long-read MinION (ONT) technology. Two mitogenomes were assembled from the same individual, differing by 52 SNPs and in length. The shorter was 19 kb long while the longer was 21 kb, due to the presence of two identical copies of nad6, three tRNA, and two dissimilar copies of the control region (CR). Contrary to albatrosses, cob was not duplicated. We further detected a complex repeated region of undetermined length between the CR and 12S. Long-read sequencing suggests heteroplasmy and a novel arrangement within the duplicated region, indicating a complex evolution of the mitogenome in Procellariiformes.


Asunto(s)
Aves/genética , ADN Mitocondrial/genética , Duplicación de Gen , Animales , Proteínas Aviares/genética , Citocromos b/genética , Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple , ARN de Transferencia/genética
5.
Biol Lett ; 14(9)2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30258030

RESUMEN

Carotenoid-based ornaments are common signalling features in animals. It has long been proposed that such ornaments communicate information about foraging abilities to potential mates. However, evidence linking foraging with ornamentation is largely missing from unmanipulated, free-ranging populations. To investigate this relationship, we studied a coastal population of brown booby (Sula leucogaster brewsteri), a seabird with a carotenoid-based gular skin ornament. δ13C values from both feathers and blood plasma were negatively correlated with male gular colour, indicating birds that consumed more pelagic prey in offshore locations had more ornamented skin than those that fed on nearshore, benthic prey. This relationship was supported by our GPS tracking results, which revealed longer, more offshore foraging trips among highly ornamented males. Our data show that brown booby ornaments are honest indicators of foraging propensity; a link consistent with the rarity hypothesis and potentially driven by the concentration of carotenoids found in phytoplankton versus benthic algae. Carotenoid-based ornaments may reflect foraging tendencies in animals such as coastal predators that use food webs with distinct carotenoid profiles.


Asunto(s)
Aves/fisiología , Carotenoides/análisis , Cadena Alimentaria , Pigmentación de la Piel/fisiología , Animales , Aves/anatomía & histología , Aves/sangre , Isótopos de Carbono/análisis , Plumas/química , Conducta Alimentaria , Masculino , Tecnología de Sensores Remotos
6.
Sci Rep ; 8(1): 10014, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968785

RESUMEN

The submersion of Late Pleistocene shorelines and poor organic preservation at many early archaeological sites obscure the earliest effects of humans on coastal resources in the Americas. We used collagen fingerprinting to identify bone fragments from middens at four California Channel Island sites that are among the oldest coastal sites in the Americas (~12,500-8,500 cal BP). We document Paleocoastal human predation of at least three marine mammal families/species, including northern elephant seals (Mirounga angustirostris), eared seals (Otariidae), and sea otters (Enhydra lutris). Otariids and elephant seals are abundant today along the Pacific Coast of North America, but elephant seals are rare in late Holocene (<1500 cal BP) archaeological sites. Our data support the hypotheses that: (1) marine mammals helped fuel the peopling of the Americas; (2) humans affected marine mammal biogeography millennia before the devastation caused by the historic fur and oil trade; and (3) the current abundance and distribution of recovering pinniped populations on the California Channel Islands may mirror a pre-human baseline.


Asunto(s)
Arqueología/métodos , Colágeno/análisis , Lobos Marinos/fisiología , Nutrias/fisiología , Phocidae/fisiología , Animales , Huesos/fisiología , California , Fósiles , Humanos
7.
Mol Phylogenet Evol ; 128: 162-171, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30017823

RESUMEN

Phylogenetic relationships among swifts of the morphologically conservative genus Chaetura were studied using mitochondrial and nuclear DNA sequences. Taxon sampling included all species and 21 of 30 taxa (species and subspecies) within Chaetura. Our results indicate that Chaetura is monophyletic and support the division of the genus into the two subgenera previously identified using plumage characters. However, our genetic data, when considered in combination with phenotypic data, appear to be at odds with the current classification of some species of Chaetura. We recommend that C. viridipennis, currently generally treated as specifically distinct from C. chapmani, be returned to its former status as C. chapmani viridipennis, and that C. andrei, now generally regarded as synonymous with C. vauxi aphanes, again be recognized as a valid species. Widespread Neotropical species C. spinicaudus is paraphyletic with respect to more range-restricted species C. fumosa, C. egregia, and C. martinica. Geographically structured genetic variation within some other species of Chaetura, especially notable in C. cinereiventris, suggests that future study may lead to recognition of additional species in this genus. Biogeographic analysis indicated that Chaetura originated in South America and identified several dispersal events to Middle and North America following the formation of the Isthmus of Panama.


Asunto(s)
Aves/clasificación , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Mitocondrias/genética , América del Norte , Panamá , Filogenia , Estaciones del Año , América del Sur , Especificidad de la Especie
8.
Data Brief ; 7: 900-22, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27077093

RESUMEN

These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, "The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)" [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material.

9.
Mol Phylogenet Evol ; 99: 16-33, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26953739

RESUMEN

The Hawaiian mints (Lamiaceae), one of the largest endemic plant lineages in the archipelago, provide an excellent system to study rapid diversification of a lineage with a remote, likely paleohybrid origin. Since their divergence from New World mints 4-5 million years ago the members of this lineage have diversified greatly and represent a remarkable array of vegetative and reproductive phenotypes. Today many members of this group are endangered or already extinct, and molecular phylogenetic work relies largely on herbarium samples collected during the last century. So far a gene-by-gene approach has been utilized, but the recent radiation of the Hawaiian mints has resulted in minimal sequence divergence and hence poor phylogenetic resolution. In our quest to trace the reticulate evolutionary history of the lineage, a resolved maternal phylogeny is necessary. We applied a high-throughput approach to sequence 12 complete or nearly complete plastid genomes from multiple Hawaiian mint species and relatives, including extinct and rare taxa. We also targeted 108 hypervariable regions from throughout the chloroplast genomes in nearly all of the remaining Hawaiian species, and relatives, using a next-generation amplicon sequencing approach. This procedure generated ∼20Kb of sequence data for each taxon and considerably increased the total number of variable sites over previous analyses. Our results demonstrate the potential of high-throughput sequencing of historic material for evolutionary studies in rapidly evolving lineages. Our study, however, also highlights the challenges of resolving relationships within recent radiations even at the genomic level.


Asunto(s)
Especies en Peligro de Extinción , Extinción Biológica , Genoma de Plastidios , Mentha/genética , Filogenia , Plastidios/genética , Emparejamiento Base/genética , Secuencia de Bases , Daño del ADN , Hawaii , Análisis de Secuencia de ADN
10.
Genome Biol Evol ; 6(2): 433-50, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24504087

RESUMEN

Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).


Asunto(s)
Metabolismo Energético , Genoma , Ursidae/genética , Ursidae/metabolismo , Adaptación Fisiológica , Animales , Regiones Árticas , Evolución Biológica , Óxido Nítrico/metabolismo , Filogenia , Proteínas/genética , Proteínas/metabolismo , Ursidae/clasificación
11.
Proc Natl Acad Sci U S A ; 110(22): 8972-7, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23671094

RESUMEN

Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ(15)N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel.


Asunto(s)
Aves/fisiología , Clima , Dieta , Cadena Alimentaria , Actividades Humanas , Factores de Edad , Análisis de Varianza , Animales , Aves/metabolismo , Huesos/química , Isótopos de Carbono/análisis , Radioisótopos de Carbono/análisis , Plumas/química , Hawaii , Humanos , Espectrometría de Masas , Isótopos de Nitrógeno/análisis , Océano Pacífico , Poliestirenos
12.
Nature ; 498(7452): 94-8, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23665961

RESUMEN

It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Magnoliopsida/genética , ADN Intergénico/genética , Duplicación de Gen/genética , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética , Sintenía/genética , Vitis/genética
13.
Proc Natl Acad Sci U S A ; 109(36): E2382-90, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22826254

RESUMEN

Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.


Asunto(s)
Adaptación Biológica/genética , Cambio Climático/historia , Evolución Molecular , Genética de Población , Genoma/genética , Ursidae/genética , Animales , Regiones Árticas , Secuencia de Bases , Marcadores Genéticos/genética , Historia Antigua , Datos de Secuencia Molecular , Densidad de Población , Dinámica Poblacional , Análisis de Secuencia de ADN , Especificidad de la Especie
14.
Mol Biol Evol ; 29(12): 3729-40, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22844071

RESUMEN

In the Hawaiian Islands, human colonization, which began approximately 1,200 to 800 years ago, marks the beginning of a period in which nearly 75% of the endemic avifauna became extinct and the population size and range of many additional species declined. It remains unclear why some species persisted whereas others did not. The endemic Hawaiian petrel (Pterodroma sandwichensis) has escaped extinction, but colonies on two islands have been extirpated and populations on remaining islands have contracted. We obtained mitochondrial DNA sequences from 100 subfossil bones, 28 museum specimens, and 289 modern samples to investigate patterns of gene flow and temporal changes in the genetic diversity of this endangered species over the last 3,000 years, as Polynesians and then Europeans colonized the Hawaiian Islands. Genetic differentiation was found to be high between both modern and ancient petrel populations. However, gene flow was substantial between the extirpated colonies on Oahu and Molokai and modern birds from the island of Lanai. No significant reductions in genetic diversity occurred over this period, despite fears in the mid-1900s that this species may have been extinct. Simulations show that even a decline to a stable effective population size of 100 individuals would result in the loss of only 5% of the expected heterozygosity. Simulations also show that high levels of genetic diversity may be retained due to the long generation time of this species. Such decoupling between population size and genetic diversity in long-lived species can have important conservation implications. It appears that a pattern of dispersal from declining colonies, in addition to long generation time, may have allowed the Hawaiian petrel to escape a severe genetic bottleneck, and the associated extinction vortex, and persist despite a large population decline after human colonization.


Asunto(s)
Aves/genética , ADN Mitocondrial/genética , Especies en Peligro de Extinción , Fósiles , Variación Genética , Animales , Secuencia de Bases , Huesos/química , Radioisótopos de Carbono/análisis , Simulación por Computador , ADN Mitocondrial/historia , Flujo Génico/genética , Genética de Población/métodos , Hawaii , Historia Antigua , Espectrometría de Masas , Modelos Genéticos , Datos de Secuencia Molecular , Dinámica Poblacional , Análisis de Secuencia de ADN
15.
Oecologia ; 168(1): 119-30, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21837410

RESUMEN

Foraging segregation may play an important role in the maintenance of animal diversity, and is a proposed mechanism for promoting genetic divergence within seabird species. However, little information exists regarding its presence among seabird populations. We investigated genetic and foraging divergence between two colonies of endangered Hawaiian petrels (Pterodroma sandwichensis) nesting on the islands of Hawaii and Kauai using the mitochondrial Cytochrome b gene and carbon, nitrogen and hydrogen isotope values (δ(13)C, δ(15)N and δD, respectively) of feathers. Genetic analyses revealed strong differentiation between colonies on Hawaii and Kauai, with Φ(ST) = 0.50 (p < 0.0001). Coalescent-based analyses gave estimates of <1 migration event per 1,000 generations. Hatch-year birds from Kauai had significantly lower δ(13)C and δ(15)N values than those from Hawaii. This is consistent with Kauai birds provisioning chicks with prey derived from near or north of the Hawaiian Islands, and Hawaii birds provisioning young with prey from regions of the equatorial Pacific characterized by elevated δ(15)N values at the food web base. δ(15)N values of Kauai and Hawaii adults differed significantly, indicating additional foraging segregation during molt. Feather δD varied from -69 to 53‰. This variation cannot be related solely to an isotopically homogeneous ocean water source or evaporative water loss. Instead, we propose the involvement of salt gland excretion. Our data demonstrate the presence of foraging segregation between proximately nesting seabird populations, despite high species mobility. This ecological diversity may facilitate population coexistence, and its preservation should be a focus of conservation strategies.


Asunto(s)
Aves/fisiología , Citocromos b/genética , Migración Animal , Animales , Aves/genética , Isótopos de Carbono , Ecología , Especies en Peligro de Extinción , Plumas/fisiología , Conducta Alimentaria , Cadena Alimentaria , Flujo Genético , Variación Genética , Proyecto Mapa de Haplotipos , Hawaii , Hidrógeno , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Océanos y Mares , Filogeografía
16.
Mol Ecol ; 20(7): 1364-77, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21324012

RESUMEN

Often during the process of divergence, genetic markers will only gradually obtain the signal of isolation. Studies of recently diverged taxa utilizing both mitochondrial and nuclear data sets may therefore yield gene trees with differing levels of phylogenetic signal as a result of differences in coalescence times. However, several factors can lead to this same pattern, and it is important to distinguish between them to gain a better understanding of the process of divergence and the factors driving it. Here, we employ three nuclear intron loci in addition to the mitochondrial Cytochrome b gene to investigate the magnitude and timing of divergence between two endangered and nearly indistinguishable petrel taxa: the Galapagos (GAPE) and Hawaiian (HAPE) petrels (Pterodroma phaeopygia and P. sandwichensis). Phylogenetic analyses indicated reciprocal monophyly between these two taxa for the mitochondrial data set, but trees derived from the nuclear introns were unresolved. Coalescent analyses revealed effectively no migration between GAPE and HAPE over the last 100,000 generations and that they diverged relatively recently, approximately 550,000 years ago, coincident with a time of intense ecological change in both the Galapagos and Hawaiian archipelagoes. This indicates that recent divergence and incomplete lineage sorting are causing the difference in the strength of the phylogenetic signal of each data set, instead of insufficient variability or ongoing male-biased dispersal. Further coalescent analyses show that gene flow is low even between islands within each archipelago suggesting that divergence may be continuing at a local scale. Accurately identifying recently isolated taxa is becoming increasingly important as many clearly recognizable species are already threatened by extinction.


Asunto(s)
Secuencia de Bases , Aves/genética , Citocromos b/genética , ADN Mitocondrial/genética , Evolución Molecular , Especiación Genética , Animales , Teorema de Bayes , Aves/clasificación , Ecuador , Flujo Génico , Hawaii , Intrones , Masculino , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...