Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; : 1133-1138, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145595

RESUMEN

The development of modern optoelectronic devices increases the need for lightweight and flexible transparent conductors. It is thus essential to develop new eco-friendly materials that can be easily processed for the fabrication of such devices. For this purpose, the synthesis of self-doped, highly conducting, transmissive, and water-processable polythiophene derivatives was performed via the direct heteroarylation polymerization method and a protection/deprotection strategy. Stable conductivities up to 1000 S cm-1 have been obtained. Champion materials (P1 and P7) were scaled and processed via the roll-to-roll compatible slot-die coating method to demonstrate their large area applicability. The best coated films exhibited optical transmittance greater than 79% at 550 nm with sheet resistances of 116 Ω â–¡-1. These values are comparable to indium-tin oxide on plastic and thus present a viable alternative to metal oxide-based electrodes.

2.
Beilstein J Org Chem ; 19: 1620-1629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915562

RESUMEN

Herein, we report on the design, synthesis, physical and chemical properties, and organic photovoltaic (OPV) device performance of four new cathode interlayer (CIL) materials based on bay N-annulated perylene diimides. Starting from the previously reported N-annulated perylene diimide (PDIN-H), the N-position was functionalized with a benzyl and pentafluorobenzyl group to make PDIN-B and PDIN-FB, respectively. Similarly, starting from the previously reported cyanated N-annulated perylene diimide (CN-PDIN-H), the N-position was functionalized with a benzyl and pentafluorobenzyl group to make CN-PDIN-B and CN-PDIN-FB, respectively. The materials exhibit solubility in the green solvent, ethyl acetate, and thus were processed into thin films using ethyl acetate as the solvent. The optoelectronic properties were assessed for both solution and film, and the electrochemical properties were probed in solution. To validate the potential as electron transporting layers, each film was used in conventional OPVs as the CIL with processing from ethyl acetate, while using a bulk heterojunction (BHJ) comprised of PM6:Y6. High power conversion efficiencies (PCEs) of 13% were achieved compared to control devices using the standard PFN-Br CIL.

3.
ACS Appl Mater Interfaces ; 14(51): 57055-57063, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516848

RESUMEN

Sustainable processing solvents, photoactive materials, and scalable manufacturing will play a key role in commercializing printed organic photovoltaics (OPVs). The record-breaking pioneering OPV reports have done an outstanding job in accelerating the discovery of champion photoactive materials and device engineering practices; however, these works predominantly involve health-hazardous halogenated processing solvents/additives and non-scalable thin-film coating methods. Herein, large-area slot-die-manufactured OPV cells from eco-friendly halogen-free solvents and synthetically scalable materials are showcased. All the four layers; electron transport layer (SnO2), cathode interlayer (PDIN-H), bulk-heterojunction (BHJ, PTQ-10:BTP-4F-12), and hole transport layer [poly(3,4-ethylenedioxythiophene):polystyrene sulfonate) (PEDOT:PSS] are slot-die-coated in air. A non-halogenated co-solvent mixture of toluene and 2-methyl tetrahydrofuran is presented as an optimal processing solvent to realize the high-quality thin films of PTQ10:BTP-4F-12. The unencapsulated champion solar cells characterized in ambient conditions (RH = 30%, T = 22 °C) exhibit power conversion efficiencies (PCEs) of 12.1 and 17.8% under 1 Sun (100 mW/cm2) and indoor light-emitting diode lighting (580 µW/cm2) conditions, respectively. Additionally, PEDOT:PSS is successfully slot-die-coated atop BHJ by mitigating wettability challenges with the aid of surface treatment. The all four-layer slot-die-coated OPVs exhibit a PCE of 9.55%.

4.
ACS Appl Mater Interfaces ; 14(38): 43558-43567, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36099398

RESUMEN

Roll-to-roll coating of conventional organic photovoltaic architectures in air necessitates low work function, electron-harvesting interlayers as the top interface, termed cathode interlayers. Traditional materials based on metal oxides are often not compatible with coating in air and/or green solvents, require thermal annealing, and are limited in feasibility due to interactions with underlying layers. Alternatively, perylene diimide materials offer easily tunable redox properties, are amenable to air coating in green solvents, and are considered champion organic-based cathode interlayers. However, underlying mechanisms of the extraction of photogenerated electrons are less well understood. Herein, we demonstrate the utilization of two N-annulated perylene diimide materials, namely, PDIN-H and CN-PDIN-H, in air-processed conventional organic photovoltaic devices, using the now standard PM6:Y6 photoactive layer. The processing ink formulation using cesium carbonate as a processing agent to solubilize the perylene diimides in suitable green solvents (1-propanol and ethyl acetate) for uniform film formation using spin or slot-die coating on top of the photoactive layer is critical. Cesium carbonate remains in the film, creating hybrid organic/metal salt cathode interlayers. Best organic photovoltaic devices have power conversion efficiencies of 13.2% with a spin-coated interlayer and 13.1% with a slot-die-coated interlayer, superior to control devices using the classic conjugated polyelectrolyte PFN-Br as an interlayer (ca. 12.8%). The cathode interlayers were found to be semi-insulating in nature, and the device performance improvements were attributed to beneficial interfacial effects and electron tunneling through sufficiently thin layers. The efficiencies beyond 13% achieved in air-processed organic photovoltaic devices utilizing slot-die-coated cathode interlayers are among the highest reported so far, opening new opportunities for the fabrication of large-area solar cell modules.

5.
ChemSusChem ; 15(11): e202200492, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35358363

RESUMEN

Herein, we report the design, synthesis, and characterization of two novel N-annulated perylene diimide (NPDI) tetramer arrays that were developed using copper catalyzed alkyne-azide cycloaddition. Despite the optoelectronic properties of both tetramers being nearly identical, the two tetramers exhibited very different molecular geometries. The twisted spirobifluorene NPDI tetramer (sbfNPDI4 ) was found to have an extended and flexible geometry, while the planar pyrene NPDI tetramer (pyrNPDI4 ) exhibited a highly congested and conformationally locked geometry. Organic photovoltaic devices were constructed to demonstrate the use of both new compounds as electron acceptor materials, where slightly higher power conversion efficiencies were achieved with pyrNPDI4 than sbfNPDI4 . This study highlights the viability of using "click" chemistry as a facile synthetic strategy towards the development of new multicomponent perylene diimide materials for organic electronic applications.

6.
Chem Sci ; 13(4): 1049-1059, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35211271

RESUMEN

The development of CO2 conversion catalysts has become paramount in the effort to close the carbon loop. Herein, we report the synthesis, characterization, and photocatalytic CO2 reduction performance for a series of N-annulated perylene diimide (NPDI) tethered Re(bpy) supramolecular dyads [Re(bpy-C2-NPDI-R)], where R = -H, -Br, -CN, -NO2, -OPh, -NH2, or pyrrolidine (-NR2). The optoelectronic properties of these Re(bpy-C2-NPDI-R) dyads were heavily influenced by the nature of the R-group, resulting in significant differences in photocatalytic CO2 reduction performance. Although some R-groups (i.e. -Br and -OPh) did not influence the performance of CO2 photocatalysis (relative to -H; TONco ∼60), the use of an electron-withdrawing -CN was found to completely deactivate the catalyst (TONco < 1) while the use of an electron-donating -NH2 improved CO2 photocatalysis four-fold (TONco = 234). Despite being the strongest EWG, the -NO2 derivative exhibited good photocatalytic CO2 reduction abilities (TONco = 137). Using a combination of CV and UV-vis-nIR SEC, it was elucidated that the -NO2 derivative undergoes an in situ transformation to -NH2 under reducing conditions, thereby generating a more active catalyst that would account for the unexpected activity. A photocatalytic CO2 mechanism was proposed for these Re(bpy-C2-NPDI-R) dyads (based on molecular orbital descriptions), where it is rationalized that the photoexcitation pathway, as well as the electronic driving-force for NPDI2- to Re(bpy) electron-transfer both significantly influence photocatalytic CO2 reduction. These results help provide rational design principles for the future development of related supramolecular dyads.

7.
ACS Appl Mater Interfaces ; 14(1): 1568-1577, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978404

RESUMEN

Commercialization of organic solar cells (OSC) is imminent. Interlayers between the photoactive film and the electrodes are critical for high device efficiency and stability. Here, the applicability of SnO2 nanoparticles (SnO2 NPs) as the electron transport layer (ETL) in conventional OSCs is evaluated. A commercial SnO2 NPs solution in butanol is mixed with ethanol (EtOH) as a processing co-solvent to improve film formation for spin and slot-die coating deposition procedures. When processed with 200% v/v EtOH, the SnO2 NPs film presents uniform film quality and low photoactive layer degradation. The optimized SnO2 NPs ink is coated, in air, on top of two polymer:fullerene-based systems and a nonfullerene system, to form an efficient ETL film. In every case, addition of SnO2 NPs film significantly enhances photovoltaic performance, from 3.4 and 3.7% without the ETL to 6.0 and 5.7% when coated on top of PBDB-T:PC61BM and PPDT2FBT:PC61BM, respectively, and from 3.7 to 7.1% when applied on top of the PTQ10:IDIC system. Flexible, all slot-die-coated devices, in air, are also fabricated and tested, demonstrating the versatility of the SnO2 NPs ink for efficient ETL formation on top of organic photoactive layers, processed under ambient condition, ideal for practical large-scale production of OSCs.

8.
ACS Appl Mater Interfaces ; 14(2): 3103-3110, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34990105

RESUMEN

The growing demand for organic electronic devices warrants further development of the scalability and green solvent processibility of π-conjugated materials. Perylene diimide (PDI)-based materials have shown impressive performance as interlayers for electronic devices due to a low ELUMO energy and high charge mobility in films. The next step in the development of these materials is the transition toward scalable production and the fabrication of devices under ambient conditions. Here, we develop a green synthetic methodology to prepare a series of PDI-based electronically active materials (X2-5), which can be slot-die-coated into uniform thin films from green solvents in air. Compounds X2-5 comprised a monomeric PDI core with a functional cyclic secondary amine appended to the bay region. Bromine or cyano moieties are incorporated into the molecular scaffold to systematically tune optoelectronic properties. The utility of these materials is demonstrated by slot-die coating them from ethanol to serve as cathode interlayers in prototype air-processed conventional organic photovoltaics. Using a PM6:Y6 active layer, device power conversion efficiencies reached 10%, among the best reported under these conditions.

9.
Small Methods ; 6(1): e2100916, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35041289

RESUMEN

It is highly desired to develop advanced characterization techniques to explore the 3D nanoscale morphology of the complicated blend film of ternary organic solar cells (OSCs). Here, ternary OSCs are constructed by incorporating the nonfullerene acceptor perylenediimide (PDI)-diketopyrrolopyrrole (DPP)-PDI and their morphology is characterized in depth to understand the performance variation. In particular, photoinduced force microscopy (PiFM) coupled with infrared laser spectroscopy is conducted to qualitatively study the distribution of donor and acceptors in the blend film by chemical identification and to quantitatively probe the segmentation of domains and the domain size distribution after PDI-DPP-PDI acceptor incorporation by PiFM imaging and data processing. In addition, the energy-filtered transmission electron microscopy with energy loss spectra is utilized to visualize the nanoscale morphology of ultrathin cross-sections in the configuration of the real ternary device for the first time in the field of photovoltaics. These measurements allow to "view" the surface and cross-sectional morphology and provide strong evidence that the PDI-DPP-PDI acceptor can suppress the aggregation of the fullerene molecules and generate the homogenous morphology with a higher-level of the molecularly mixed phase, which can prevent the charge recombination and stabilize the morphology of photoactive layer.

10.
ACS Appl Mater Interfaces ; 13(41): 49096-49103, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34636554

RESUMEN

In this work, we report the formation of perylene diimide films, from green solvents, for use as electron transporting layers, when combined with ZnO, in inverted-type organic photovoltaics. A modified N-annulated PDI was functionalized with a tert-butyloxycarbonyl protecting group to solubilize the material, enabling solution processing from green solvents. Post-deposition treatment of films via thermal annealing cleaves the protecting group yielding the known PDIN-H material, rendering films solvent-resistant. The PDIN-H films were characterized by optical absorption spectroscopy, contact angle measurements, and atomic force microscopy. When used to modify the surface of ZnO in inverted-type organic photovoltaics (air-processed and tested) based on the PM6:Y6 and PTQ10:Y6 bulk-heterojunctions, the device power conversion efficiency increases from 9.8 to 11.0% and 7.2 to 9.8%, respectively.

11.
J Am Chem Soc ; 143(40): 16849-16864, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34597040

RESUMEN

We report the design, synthesis, and characterization of four N-annulated perylene diimide (NPDI) functionalized rhenium bipyridine [Re(bpy)] supramolecular dyads. The Re(bpy) scaffold was connected to the NPDI chromophore either directly [Re(py-C0-NPDI)] or via an ethyl [Re(bpy-C2-NPDI)], butyl [Re(bpy-C4-NPDI)], or hexyl [Re(bpy-C6-NPDI)] alkyl-chain spacer. Upon electrochemical reduction in the presence of CO2 and a proton source, Re(bpy-C2/4/6-NPDI) all exhibited significant current enhancement effects, while Re(py-C0-NPDI) did not. During controlled potential electrolysis (CPE) experiments at Eappl = -1.8 V vs Fc+/0, Re(bpy-C2/4/6-NPDI) all achieved comparable activity (TONco ∼ 25) and Faradaic efficiency (FEco ∼ 94%). Under identical CPE conditions, the standard catalyst Re(dmbpy) was inactive for electrocatalytic CO2 reduction; only at Eappl = -2.1 V vs Fc+/0 could Re(dmbpy) achieve the same catalytic performance, representing a 300 mV lowering in overpotential for Re(bpy-C2/4/6-NPDI). At higher overpotentials, Re(bpy-C4/6-NPDI) both outperformed Re(bpy-C2-NPDI), indicating the possibility of coinciding electrocatalytic CO2 reduction mechanisms that are dictated by tether-length and overpotential. Using UV-vis-nearIR spectroelectrochemistry (SEC), FTIR SEC, and chemical reduction experiments, it was shown that the NPDI-moiety served as an electron-reservoir for Re(bpy), thereby allowing catalytic activity at lower overpotentials. Density functional theory studies probing the optimized geometries and frontier molecular orbitals of various catalytic intermediates revealed that the geometric configuration of NPDI relative to the Re(bpy)-moiety plays a critical role in accessing electrons from the electron-reservoir. The improved performance of Re(bpy-C2/4/6-NPDI)dyads at lower overpotentials, relative to Re(dmbpy), highlights the utility of chromophore electron-reservoirs as a method for lowering the overpotential for CO2 conversion.

12.
ChemSusChem ; 14(17): 3511-3519, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-33496067

RESUMEN

Organic photovoltaics have found utility as indoor light recycling devices providing an opportunity for the sustainable powering of IoT sensors and related smart electronics. In the report, two organic π-conjugated molecules consisting of four perylene diimide (PDI) chromophores each are presented and used as non-fullerene acceptors in indoor photovoltaic devices. The new materials consist of a dimeric N-annulated PDI core with single PDIs grafted onto the pyrrolic N-atom positions of the core. Compounds PDI4 e and PDI4 i are PDI tetramers and differ with PDI4 e having the terminal N-annulated PDI with pyrrolic N-atom distal to the core and PDI4 i having the terminal N-annulated PDI with pyrrolic N-atom proximal to the core. The structural and optoelectronic properties were investigated using NMR spectroscopy, optical absorption and emission spectroscopy, and cyclic voltammetry. The compounds exhibit typical optical signatures for PDIs but notable is that the addition of grafted PDI molecules prevents significant aggregation of the dimeric PDI core, as compared to a reference dimer. Use as non-fullerene acceptors in ternary bulk-heterojunction blends with the polymer FBT and fullerene PC61 BM lead to increased open-circuit voltages and power conversion efficiencies upwards of 13.7 % at 2000 lux light intensity.

13.
ACS Appl Mater Interfaces ; 12(46): 51736-51743, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33155464

RESUMEN

An N-annulated perylene diimide dimer, tPDI2N-hex, a graphene model compound with atomic precision, was investigated for luminescence applications. Electrochemiluminescence (ECL) of tPDI2N-hex was studied with tri-n-propylamine (TPrA) as a reducing coreactant. ECL-voltage curves along with spooling ECL spectra provided details of light generation mechanisms. The relative ECL quantum efficiency of the Ru(bpy)3(PF6)2/TPrA system was calculated to be 64%, which is superior to that of many other organic molecules because of the desired excited state in the absence of surface states. An organic light-emitting diode (OLED) fabricated with tPDI2N-hex displayed bright orange-red emission with a low color temperature, which is very desirable. It is plausible that the sterically constrained and thus orthogonal aromatic moieties in the tPDI2N-hex structure, with atomic precision graphene layer characteristics, lead to the excellent luminescence performances. The ECL and OLED studies of tPDI2N-hex showcase great application potentials of tPDI2N-hex in both solution-based ECL probes and solid-state light devices.

14.
ACS Appl Mater Interfaces ; 12(39): 43684-43693, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32946216

RESUMEN

Efficient organic photovoltaics (OPVs) based on slot-die-coated (SD) ternary blends were developed for low-intensity indoor light harvesting. For active layers processed in air and from eco-friendly solvents, our device performances (under 1 sun and low light intensity) are the highest reported values for fluoro-dithiophenyl-benzothiadiazole donor polymer-based OPVs. The N-annulated perylene diimide dimer acceptor was incorporated into a blend of donor polymer (FBT) and fullerene acceptor (PC61BM) to give ternary bulk heterojunction blends. SD ternary-based devices under 1 sun illumination showed enhanced power conversion efficiency (PCE) from 6.8 to 7.7%. We observed enhancement in the short-circuit current density and open-circuit voltage of the devices. Under low light intensity light-emitting device illumination (ca. 2000 lux), the ternary-based devices achieved a PCE of 14.0% and a maximum power density of 79 µW/cm2 compared to a PCE of 12.0% and a maximum power density of 68 µW/cm2 for binary-based devices. Under the same illumination conditions, the spin-coated (SC) devices showed a PCE of 15.5% and a maximum power density of 88 µW/cm2. Collectively, these results demonstrate the exceptional promise of a SD ternary blend system for indoor light harvesting and the need to optimize active layers based on industry-relevant coating approaches toward mini modules.

15.
Chem Commun (Camb) ; 56(70): 10131-10134, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32812572

RESUMEN

The synthesis of benzothioxanthene imide based dimers is reported herein. Subtle chemical modifications were carried out and their impact on the optical and electrochemical properties was investigated for a better structure-property relationship analysis. The icing on the cake was that these new structures were used as light emitting materials for the fabrication and demonstration of the first BTXI-based OLEDs.

16.
ACS Appl Mater Interfaces ; 11(49): 46017-46025, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31725265

RESUMEN

Strong visible light absorption is essential to achieve high power conversion efficiency in indoor organic photovoltaics (iOPVs). Here, we report iOPVs that exhibit high efficiency with high voltage under excitation by low power indoor lighting. Inverted type organic photovoltaic devices with active layer blends utilizing the polymer donor PPDT2FBT paired with fullerene, perylene diimide, or ring-fused acceptors that are 6.5-9.1% efficient under 1 sun are demonstrated to reach efficiencies from 10 to 17% under an indoor light source. This performance transcends that of a standard silicon photovoltaic device. Moreover, we compared iOPVs with active layers both spin-cast and slot-die cast from nonhalogenated solvents and demonstrate comparable performance. This work opens a path towards high-efficiency iOPVs for low power electronics.

17.
ACS Appl Mater Interfaces ; 11(42): 39010-39017, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547651

RESUMEN

Herein, we investigate the role of processing solvent additives on the formation of polymer-perylene diimide bulk-heterojunction active layers for organic photovoltaics using both spin-coating and slot-die coating methods. We compare the effect of 1,8-diiodooctane (DIO) and diphenyl ether (DPE) as solvent additives on the aggregation behavior of the non-fullerene acceptor, N-annulated perylene diimide dimer (tPDI2N-EH), in neat films and blended films with the benzodithiophene-quinoxaline (BDT-QX, QX-3) donor polymer, processed from toluene in air. DIO processing crystallizes the tPDI2N-EH acceptor and leads to the decreased solar cell performance. DPE processing has a more subtle effect on the bulk-heterojunction morphology and leads to an improved solar cell performance. A comparison of the spin-coating vs slot-die coating methods shows that the effect of DPE is prominent for the slot-die coated active layers. While similar device power conversion efficiencies are achieved with active layers coated with both methods (ca. 7.3% vs 6.5%), the use of DPE improves the film quality when the slot-die coating method is employed.

18.
Chem Commun (Camb) ; 55(74): 11095-11098, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31460525

RESUMEN

The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron-nitrogen doped dihydroindeno[1,2-b]fluorene which can be synthesized using standard Schlenk techniques and worked up and handled readily under atmospheric conditions. Through transmetallation via diarylzinc reagents a series of derivatives were synthesized which show broad visible to near-IR light absorption profiles that highlight the versatility of this BN substituted core for use in optoelectronic devices. The synthesis is efficient, scalable and allows for tuning through changes in substituents on the planar heterocyclic core and at boron. Exploratory evaluation in organic solar cell devices as non-fullerene acceptors gave power conversion efficiencies of 2%.

19.
Soft Matter ; 15(25): 5138-5146, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31190040

RESUMEN

The controlled aggregation of organic π-conjugated molecular semiconductors within a host material (often a polymer) is important for obtaining appropriate organic film morphologies and mechanical properties for optoelectronic applications. In this study, we demonstrate how we have challenged the twisting effect in perylene diimide dimers, which is known to hinder their aggregation. Indeed, a twisted N-annulated perylene diimide dimer (tPDI2N-EH) can be induced to form crystalline aggregates within a host poly-3-hexylthiophene (P3HT) polymer matrix using solution processing. The size of the aggregates can be controlled using varying amounts of the common processing solvent additive 1,8-diiodooctane (DIO) during film formation, by changing the concentration of the molecule within the polymer film, and by adjusting the film drying time. A combination of UV-visible spectroscopy, fluorescence microscopy, cross-polarized light microscopy, and atomic force microscopy were used to characterize the organic films.

20.
Chem Rec ; 19(6): 961, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31136101
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA