Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Proteome Res ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836855

RESUMEN

Sleep is regulated via circadian mechanisms, but effects of sleep disruption on physiological rhythms, in particular metabolic cycling, remain unclear. To examine this question, we probed diurnal metabolic alterations of two Drosophila short sleep mutants, fumin and sleepless. Samples were collected with high temporal sampling (every 2 h) over 24 h under a 12:12 light:dark cycle, and profiling was done using an ion-switching LCMS/MS method. Fewer metabolites with 24 h oscillations were noted with short sleep (50 and 46 in fumin and sleepless, BH. Q < 0.2 by RAIN analysis) compared to a wild-type control (iso31, 63 with BH. Q < 0.2), and peak phases of the sleep mutants were consolidated into two major phase peaks at mid-day and middle of night. Overall, altered nicotinate/nicotinamide, alanine/aspartate/glutamate, acetylcholine, glyoxylate/dicarboxylate, and TCA cycle metabolism were observed in the short sleep mutants, indicative of increased energetic demand and oxidative stress compared to wild type. Both changes in cycling and discriminant models suggest unique alterations in the dark period indicative of constrained metabolic networks. Thus, we conclude that sleep loss alters metabolic function uniquely throughout the day, and further examination of specific mechanisms is warranted.

3.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454606

RESUMEN

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Liposomas , Nanopartículas , Molécula 1 de Adhesión Celular Vascular , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Animales , Ratones , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Nanopartículas/química , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Lípidos/química , Sistemas de Liberación de Medicamentos/métodos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Humanos
4.
Aging Cell ; 23(4): e14082, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38204362

RESUMEN

Circadian cycles of sleep:wake and gene expression change with age in all organisms examined. Metabolism is also under robust circadian regulation, but little is known about how metabolic cycles change with age and whether these contribute to the regulation of behavioral cycles. To address this gap, we compared cycling of metabolites in young and old Drosophila and found major age-related variations. A significant model separated the young metabolic profiles by circadian timepoint, but could not be defined for the old metabolic profiles due to the greater variation in this dataset. Of the 159 metabolites measured in fly heads, we found 17 that cycle by JTK analysis in young flies and 17 in aged. Only four metabolites overlapped in the two groups, suggesting that cycling metabolites are distinct in young and old animals. Among our top cyclers exclusive to young flies were components of the pentose phosphate pathway (PPP). As the PPP is important for buffering reactive oxygen species, and overexpression of glucose-6-phosphate dehydrogenase (G6PD), a key component of the PPP, was previously shown to extend lifespan in Drosophila, we asked if this manipulation also affects sleep:wake cycles. We found that overexpression in circadian clock neurons decreases sleep in association with an increase in cellular calcium and mitochondrial oxidation, suggesting that altering PPP activity affects neuronal activity. Our findings elucidate the importance of metabolic regulation in maintaining patterns of neural activity, and thereby sleep:wake cycles.


Asunto(s)
Relojes Circadianos , Drosophila , Animales , Drosophila/metabolismo , Sueño , Especies Reactivas de Oxígeno/metabolismo , Vía de Pentosa Fosfato , Ritmo Circadiano
5.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961230

RESUMEN

Rhythmicity is a central feature of behavioral and biological processes including metabolism, however, the mechanisms of metabolite cycling are poorly understood. A robust oscillation in a network of key metabolite pathways downstream of glucose is described in humans, then these pathways mechanistically probed through purpose-built 13C6-glucose isotope tracing in Drosophila every 4h. A temporal peak in biosynthesis was noted by broad labelling of pathways downstream of glucose in wild-type flies shortly following lights on. Krebs cycle labelling was generally increased in a hyperactive mutant (fumin) along with glycolysis labelling primarily observed at dawn. Surprisingly, neither underlying feeding rhythms nor the presence of food explains the rhythmicity of glucose processing across genotypes. These results are consistent with clinical data demonstrating detrimental effects of mis-timed energy intake. This approach provides a window into the dynamic range of metabolic processing ability through the day and mechanistic basis for exploring circadian metabolic homeostasis in disease states.

6.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961245

RESUMEN

Sleep is an almost universally required state in biology. Disrupted sleep has been associated with adverse health risks including metabolic perturbations. Sleep is in part regulated via circadian mechanisms, however, metabolic dysfunction at different times of day arising from sleep disruption is unclear. We used targeted liquid chromatography-mass spectrometry to probe metabolic alterations using high-resolution temporal sampling of two Drosophila short sleep mutants, fumin and sleepless, across a circadian day. Discriminant analyses revealed overall distinct metabolic profiles for mutants when compared to a wild type dataset. Altered levels of metabolites involved in nicotinate/nicotinamide, alanine, aspartate, and glutamate, glyoxylate and dicarboxylate metabolism, and the TCA cycle were observed in mutants suggesting increased energetic demands. Furthermore, rhythmicity analyses revealed fewer 24 hr rhythmic metabolites in both mutants. Interestingly, mutants displayed two major peaks in phases while wild type displayed phases that were less concerted. In contrast to 24 hr rhythmic metabolites, an increase in the number of 12 hr rhythmic metabolites was observed in fumin while sleepless displayed a decrease. These results support that decreased sleep alters the overall metabolic profile with short sleep mutants displaying altered metabolite levels associated with a number of pathways in addition to altered neurotransmitter levels.

7.
Clin Transl Med ; 13(11): e1440, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37948331

RESUMEN

BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.


Asunto(s)
COVID-19 , Fosfolipasas A2 Secretoras , Sepsis , Humanos , SARS-CoV-2 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Lipidómica , Leucocitos Mononucleares , Leucotrieno E4 , Prostaglandina D2 , Ciclooxigenasa 2 , Eicosanoides
8.
Sleep ; 46(11)2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37738102

RESUMEN

STUDY OBJECTIVES: Insufficient sleep is a concerning hallmark of modern society because sleep deprivation (SD) is a risk factor for neurodegenerative and cardiometabolic disorders. SD imparts an aging-like effect on learning and memory, although little is known about possible common molecular underpinnings of SD and aging. Here, we examine this question by profiling metabolic features across different tissues after acute SD in young adult and aged mice. METHODS: Young adult and aged mice were subjected to acute SD for 5 hours. Blood plasma, hippocampus, and liver samples were subjected to UPLC-MS/MS-based metabolic profiling. RESULTS: SD preferentially impacts peripheral plasma and liver profiles (e.g. ketone body metabolism) whereas the hippocampus is more impacted by aging. We further demonstrate that aged animals exhibit SD-like metabolic features at baseline. Hepatic alterations include parallel changes in nicotinamide metabolism between aging and SD in young animals. Overall, metabolism in young adult animals is more impacted by SD, which in turn induces aging-like features. A set of nine metabolites was classified (79% correct) based on age and sleep status across all four groups. CONCLUSIONS: Our metabolic observations demonstrate striking parallels to previous observations in studies of learning and memory and define a molecular metabolic signature of sleep loss and aging.


Asunto(s)
Privación de Sueño , Espectrometría de Masas en Tándem , Ratones , Animales , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Cromatografía Liquida , Sueño , Envejecimiento
9.
PLoS Genet ; 19(8): e1010904, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37639465

RESUMEN

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.


Asunto(s)
Ritmo Circadiano , Neoplasias , Proteínas Proto-Oncogénicas c-myc , Humanos , Aminoácidos/metabolismo , Línea Celular , Membrana Celular , Metabolómica , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
10.
J Am Soc Mass Spectrom ; 34(9): 1970-1978, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37540625

RESUMEN

Increased access to cheap and rapid mass spectrometry testing of biofluids is desirable for the analysis of disorders and diseases that may be linked to alterations in metabolite or lipid levels. The objective of this study is to establish an easily customized high-throughput workflow for the analysis of biological samples using desorption electrospray ionization-mass spectrometry (DESI-MS). The guiding principles of this workflow are the use of low-cost, open-source, and readily accessible materials with high-throughput and reproducibility. The design consists of 3 steps: (1) PARAFILM surface customization of size, shape, and depth of features on PARAFILM via 3D printed molds; (2) sample spotting via high-throughput robotics using the relatively inexpensive and open-source Opentrons platform to reduce variability and increase reliability of sample spotting; and (3) an open-source point-and-click graphical user interface (MSI.EAGLE) for data analysis via the R statistical language building on the Cardinal package. Here we describe this workflow and test optimal surface ionization characteristics by comparison of serum extracts spotted on PARAFILM and on PTFE (porous and nonporous). Untargeted analysis across three surfaces suggests that they are all suitable for ionization of a wide range of metabolites and lipids, with 3983 m/z features detected. Differential analysis of polar vs nonpolar serum extracts suggests that ∼80% of ions are desorbed preferentially from different surfaces. PARAFILM is less impacted by the interference of background ions derived from the surface. The developed system allows for a wide range of researchers to access custom surface design workflows and high-throughput analyses in a highly cost-effective manner.


Asunto(s)
Lipidómica , Parafina , Reproducibilidad de los Resultados , Lipidómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones
11.
bioRxiv ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37398323

RESUMEN

Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A 2 (sPLA 2 ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD 2 and PGI 2 , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflect disease severity in COVID-19. AA and LA metabolites and LPC-O-16:0 linked variably to the immune response. These studies yield prognostic biomarkers and therapeutic targets for patients with sepsis, including COVID-19. An interactive purpose built interactive network analysis tool was developed, allowing the community to interrogate connections across these multiomic data and generate novel hypotheses.

12.
Sci Transl Med ; 15(696): eabo2022, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37196066

RESUMEN

Longitudinal studies associate shiftwork with cardiometabolic disorders but do not establish causation or elucidate mechanisms of disease. We developed a mouse model based on shiftwork schedules to study circadian misalignment in both sexes. Behavioral and transcriptional rhythmicity were preserved in female mice despite exposure to misalignment. Females were protected from the cardiometabolic impact of circadian misalignment on a high-fat diet seen in males. The liver transcriptome and proteome revealed discordant pathway perturbations between the sexes. Tissue-level changes were accompanied by gut microbiome dysbiosis only in male mice, biasing toward increased potential for diabetogenic branched chain amino acid production. Antibiotic ablation of the gut microbiota diminished the impact of misalignment. In the United Kingdom Biobank, females showed stronger circadian rhythmicity in activity and a lower incidence of metabolic syndrome than males among job-matched shiftworkers. Thus, we show that female mice are more resilient than males to chronic circadian misalignment and that these differences are conserved in humans.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Masculino , Femenino , Animales , Ratones , Dieta Alta en Grasa , Caracteres Sexuales , Ritmo Circadiano
13.
J Pharmacol Exp Ther ; 386(2): 198-204, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37105582

RESUMEN

Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Proyectos Piloto , Proteómica , Anticuerpos Antivirales , Inmunoglobulina G , Vacunación , Inmunidad , Antiinflamatorios
14.
Curr Biol ; 33(8): 1613-1623.e5, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36965479

RESUMEN

Chronic sleep loss profoundly impacts metabolic health and shortens lifespan, but studies of the mechanisms involved have focused largely on acute sleep deprivation.1,2 To identify metabolic consequences of chronically reduced sleep, we conducted unbiased metabolomics on heads of three adult Drosophila short-sleeping mutants with very different mechanisms of sleep loss: fumin (fmn), redeye (rye), and sleepless (sss).3,4,5,6,7 Common features included elevated ornithine and polyamines, with lipid, acyl-carnitine, and TCA cycle changes suggesting mitochondrial dysfunction. Studies of excretion demonstrate inefficient nitrogen elimination in adult sleep mutants, likely contributing to their polyamine accumulation. Increasing levels of polyamines, particularly putrescine, promote sleep in control flies but poison sleep mutants. This parallels the broadly enhanced toxicity of high dietary nitrogen load from protein in chronically sleep-restricted Drosophila, including both sleep mutants and flies with hyper-activated wake-promoting neurons. Together, our results implicate nitrogen stress as a novel mechanism linking chronic sleep loss to adverse health outcomes-and perhaps for linking food and sleep homeostasis at the cellular level in healthy organisms.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sueño/fisiología , Drosophila/metabolismo , Poliaminas
15.
Cell Metab ; 35(3): 517-534.e8, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36804058

RESUMEN

The efficacy of immunotherapy is limited by the paucity of T cells delivered and infiltrated into the tumors through aberrant tumor vasculature. Here, we report that phosphoglycerate dehydrogenase (PHGDH)-mediated endothelial cell (EC) metabolism fuels the formation of a hypoxic and immune-hostile vascular microenvironment, driving glioblastoma (GBM) resistance to chimeric antigen receptor (CAR)-T cell immunotherapy. Our metabolome and transcriptome analyses of human and mouse GBM tumors identify that PHGDH expression and serine metabolism are preferentially altered in tumor ECs. Tumor microenvironmental cues induce ATF4-mediated PHGDH expression in ECs, triggering a redox-dependent mechanism that regulates endothelial glycolysis and leads to EC overgrowth. Genetic PHGDH ablation in ECs prunes over-sprouting vasculature, abrogates intratumoral hypoxia, and improves T cell infiltration into the tumors. PHGDH inhibition activates anti-tumor T cell immunity and sensitizes GBM to CAR T therapy. Thus, reprogramming endothelial metabolism by targeting PHGDH may offer a unique opportunity to improve T cell-based immunotherapy.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Animales , Ratones , Humanos , Glioblastoma/terapia , Glioblastoma/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Línea Celular Tumoral , Inmunoterapia Adoptiva , Linfocitos T/metabolismo , Microambiente Tumoral
16.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36711638

RESUMEN

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.

17.
Nat Commun ; 13(1): 6623, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333297

RESUMEN

Activities of dendritic cells (DCs) that present tumor antigens are often suppressed in tumors. Here we report that this suppression is induced by tumor microenvironment-derived factors, which activate the activating transcription factor-3 (ATF3) transcription factor and downregulate cholesterol 25-hydroxylase (CH25H). Loss of CH25H in antigen presenting cells isolated from human lung tumors is associated with tumor growth and lung cancer progression. Accordingly, mice lacking CH25H in DCs exhibit an accelerated tumor growth, decreased infiltration and impaired activation of intratumoral CD8+ T cells. These mice do not establish measurable long-term immunity against malignant cells that undergo chemotherapy-induced immunogenic cell death. Mechanistically, downregulation of CH25H stimulates membrane fusion between endo-phagosomes and lysosomes, accelerates lysosomal degradation and restricts cross-presentation of tumor antigens in the intratumoral DCs. Administration of STING agonist MSA-2 reduces the lysosomal activity in DCs, restores antigen cross presentation, and increases therapeutic efficacy of PD-1 blockade against tumour challenge in a CH25H-dependent manner. These studies highlight the importance of downregulation of CH25H in DCs for tumor immune evasion and resistance to therapy.


Asunto(s)
Reactividad Cruzada , Neoplasias Pulmonares , Ratones , Humanos , Animales , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Células Dendríticas , Neoplasias Pulmonares/metabolismo , Lisosomas , Ratones Endogámicos C57BL , Microambiente Tumoral
18.
Cell Metab ; 34(9): 1342-1358.e7, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070682

RESUMEN

Effector trogocytosis between malignant cells and tumor-specific cytotoxic T lymphocytes (CTLs) contributes to immune evasion through antigen loss on target cells and fratricide of antigen-experienced CTLs by other CTLs. The mechanisms regulating these events in tumors remain poorly understood. Here, we demonstrate that tumor-derived factors (TDFs) stimulated effector trogocytosis and restricted CTLs' tumoricidal activity and viability in vitro. TDFs robustly altered the CTL's lipid profile, including depletion of 25-hydroxycholesterol (25HC). 25HC inhibited trogocytosis and prevented CTL's inactivation and fratricide. Mechanistically, TDFs induced ATF3 transcription factor that suppressed the expression of 25HC-regulating gene-cholesterol 25-hydroxylase (CH25H). Stimulation of trogocytosis in the intratumoral CTL by the ATF3-CH25H axis attenuated anti-tumor immunity, stimulated tumor growth, and impeded the efficacy of chimeric antigen receptor (CAR) T cell adoptive therapy. Through use of armored CAR constructs or pharmacologic agents restoring CH25H expression, we reversed these phenotypes and increased the efficacy of immunotherapies.


Asunto(s)
Linfocitos T Citotóxicos , Trogocitosis , Inmunoterapia , Esteroide Hidroxilasas , Replicación Viral/genética
19.
Nat Cell Biol ; 24(6): 940-953, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654839

RESUMEN

Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Melanoma , Neoplasias Pancreáticas , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Ratones , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neoplasias Pancreáticas/patología
20.
ACS Appl Mater Interfaces ; 13(49): 58401-58410, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34846845

RESUMEN

Most current nanoparticle formulations have relatively low clearance efficiency, which may hamper their likelihood for clinical translation. Herein, we sought to compare the clearance and cellular distribution profiles between sub-5 nm, renally-excretable silver sulfide nanoparticles (Ag2S-NPs) synthesized via either a bulk, high temperature, or a microfluidic, room temperature approach. We found that the thermolysis approach led to significant ligand degradation, but the surface coating shell was unaffected by the microfluidic synthesis. We demonstrated that the clearance was improved for Ag2S-NPs with intact ligands, with less uptake in the liver. Moreover, differential distribution in hepatic cells was observed, where Ag2S-NPs with degraded coatings tend to accumulate in Kupffer cells and those with intact coatings are more frequently found in hepatocytes. Therefore, understanding the impact of synthetic processes on ligand integrity and subsequent nano-biointeractions will aid in designing nanoparticle platforms with enhanced clearance and desired distribution profiles.


Asunto(s)
Materiales Biocompatibles Revestidos/metabolismo , Nanopartículas/metabolismo , Compuestos de Plata/metabolismo , Animales , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Femenino , Ligandos , Hígado/química , Hígado/metabolismo , Ensayo de Materiales , Ratones , Ratones Desnudos , Nanopartículas/química , Tamaño de la Partícula , Compuestos de Plata/química , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...