Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Eur J Med Chem ; 271: 116357, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636130

RESUMEN

The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was potently inhibited as an off-target kinase. The oxindole has long been considered a promiscuous kinase inhibitor template, but across these four specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different ranging from narrow to broad spectrum kinome coverage. We synthesized a large series of analogues, utilizing quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, kinome profiling, and small-molecule x-ray structural analysis to optimize TLK2 inhibition and kinome selectivity. This resulted in the identification of several narrow spectrum, sub-family selective, chemical tool compounds including 128 (UNC-CA2-103) that could enable elucidation of TLK2 biology.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad Cuantitativa , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Humanos , Estructura Molecular , Oxindoles/farmacología , Oxindoles/química , Oxindoles/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Dosis-Respuesta a Droga , Modelos Moleculares
2.
Artículo en Inglés | MEDLINE | ID: mdl-38009092

RESUMEN

Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.

3.
Methods Mol Biol ; 2706: 11-24, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37558938

RESUMEN

Advances in increasingly complex phenotypic screening with lower throughput have necessitated the screening of smaller more highly annotated sets. One such collection of compounds which has been recently assembled is the kinase chemogenomic set. This is a set of curated kinase inhibitors built upon previous iterations, PKIS and PKIS2, and donations from our partners. Each compound in the set has been carefully selected based on selectivity, potency, and kinome coverage. These compounds as a set have been made available to the scientific community, enabling phenotypic screens to identify kinases that drive novel biology. Additionally, the associated data deposited in the public domain have also been used to inform new inhibitor design. Further expansion of this set to complete kinome coverage will allow for a greater understanding of kinase biology and its role in disease.


Asunto(s)
Fosfotransferasas , Inhibidores de Proteínas Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Biología
4.
J Proteome Res ; 22(10): 3159-3177, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37634194

RESUMEN

Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections. To further understand the host kinome response to betacoronavirus infection, we employed multiplex inhibitory bead mass spectrometry (MIB-MS) following MERS-CoV and SARS-CoV-2 infection of human lung epithelial cell lines. Our MIB-MS analyses revealed activation of mTOR and MAPK signaling following MERS-CoV and SARS-CoV-2 infection, respectively. SARS-CoV-2 host kinome responses were further characterized using paired phosphoproteomics, which identified activation of MAPK, PI3K, and mTOR signaling. Through chemogenomic screening, we found that clinically relevant PI3K/mTOR inhibitors were able to inhibit coronavirus replication at nanomolar concentrations similar to direct-acting antivirals. This study lays the groundwork for identifying broad-acting, host-targeted therapies to reduce betacoronavirus replication that can be rapidly repurposed during future outbreaks and epidemics. The proteomics, phosphoproteomics, and MIB-MS datasets generated in this study are available in the Proteomics Identification Database (PRIDE) repository under project identifiers PXD040897 and PXD040901.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Antivirales/farmacología , Inhibidores mTOR , Fosfatidilinositol 3-Quinasas , SARS-CoV-2 , Replicación Viral , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Serina-Treonina Quinasas TOR
5.
Elife ; 122023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490324

RESUMEN

Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3ß, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3ß activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3ß activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3ß. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.


Asunto(s)
Hipocampo , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Humanos , Glucógeno Sintasa Quinasa 3 beta/genética , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Hipocampo/metabolismo , Quinasas Ciclina-Dependientes
6.
bioRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37162893

RESUMEN

Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3b, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3b activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3b activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3b. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.

7.
ACS Chem Neurosci ; 14(9): 1672-1685, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37084253

RESUMEN

Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a compound that has advanced to phase II clinical trials and is a known inhibitor of several cyclin-dependent kinases (CDKs) and cyclin-dependent kinase-like kinases (CDKLs). We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/ß affinity. We next demonstrated the inhibition of downstream CDKL5 and GSK3α/ß signaling and solved a co-crystal structure of analog 2 bound to human CDKL5. A structurally similar analog (4) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/ß, making it a suitable negative control. Finally, we used our chemical probe pair (2 and 4) to demonstrate that inhibition of CDKL5 and/or GSK3α/ß promotes the survival of human motor neurons exposed to endoplasmic reticulum stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Neuronas , Quinasas Ciclina-Dependientes , Proteínas Serina-Treonina Quinasas
8.
ACS Med Chem Lett ; 14(4): 432-441, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37077385

RESUMEN

Naphthyridine-based inhibitors were synthesized to yield a potent and cell-active inhibitor of casein kinase 2 (CK2). Compound 2 selectively inhibits CK2α and CK2α' when profiled broadly, thereby making it an exquisitely selective chemical probe for CK2. A negative control that is structurally related but lacks a key hinge-binding nitrogen (7) was designed on the basis of structural studies. Compound 7 does not bind CK2α or CK2α' in cells and demonstrates excellent kinome-wide selectivity. Differential anticancer activity was observed when compound 2 was profiled alongside a structurally distinct CK2 chemical probe: SGC-CK2-1. This naphthyridine-based chemical probe (2) represents one of the best available small molecule tools with which to interrogate biology mediated by CK2.

9.
bioRxiv ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36798313

RESUMEN

Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a known inhibitor of several cyclin dependent and cyclin-dependent kinase-like kinases that has been advanced into Phase II clinical trials. We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/ß affinity. As confirmation that our chemical probe is a high-quality tool to use in directed biological studies, we demonstrated inhibition of downstream CDKL5 and GSK3α/ß signaling and solved a co-crystal structure of analog 2 bound to CDKL5. A structurally similar analog ( 4 ) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/ß. Finally, we used our chemical probe pair ( 2 and 4 ) to demonstrate that inhibition of CDKL5 and/or GSK3α/ß promotes the survival of human motor neurons exposed to endoplasmic reticulum (ER) stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.

10.
Cells ; 12(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672221

RESUMEN

The serine/threonine protein kinase calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) plays critical roles in a range of biological processes. Despite its importance, only a handful of inhibitors of CAMKK2 have been disclosed. Having a selective small molecule tool to interrogate this kinase will help demonstrate that CAMKK2 inhibition can be therapeutically beneficial. Herein, we disclose SGC-CAMKK2-1, a selective chemical probe that targets CAMKK2.

11.
bioRxiv ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38234837

RESUMEN

The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was a potent off-target kinase. The oxindole has long been considered a promiscuous inhibitor template, but across these 4 specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different from narrow to broad spectrum coverage. We synthesized a large series of analogues and through quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, small-molecule x-ray structural analysis and kinome profiling, narrow spectrum, sub-family selective, chemical tool compounds were identified to enable elucidation of TLK2 biology.

12.
Plant Direct ; 6(11): e460, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36447653

RESUMEN

One hundred twenty-nine protein kinases, selected to represent the diversity of the rice (Oryza sativa) kinome, were cloned and tested for expression in Escherichia coli. Forty of these rice kinases were purified and screened using differential scanning fluorimetry (DSF) against 627 diverse kinase inhibitors, with a range of structures and activities targeting diverse human kinases. Thirty-seven active compounds were then tested for their ability to modify primary root development in Arabidopsis. Of these, 14 compounds caused a significant reduction of primary root length compared with control plants. Two of these inhibitory compounds bind to the predicted orthologue of Arabidopsis PSKR1, one of two receptors for PSK, a small sulfated peptide that positively controls root development. The reduced root length phenotype could not be rescued by the exogenous addition of the PSK peptide, suggesting that chemical treatment may inhibit both PSKR1 and its closely related receptor PSKR2. Six of the compounds acting as root growth inhibitors in Arabidopsis conferred the same effect in rice. Compound RAF265 (CHIR-265), previously shown to bind the human kinase BRAF (B-Raf proto-oncogene, serine/threonine kinase), also binds to nine highly conserved rice kinases tested. The binding of human and rice kinases to the same compound suggests that human kinase inhibitor sets will be useful for dissecting the function of plant kinases.

13.
ACS Chem Biol ; 17(7): 1937-1950, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35723434

RESUMEN

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human, bat, and murine ß-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in ß-coronavirus replication. Spike protein endocytosis was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for the development of anti-SARS-like ß-coronavirus drugs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Antivirales/farmacología , Coronavirus/genética , Humanos , Ratones , Internalización del Virus
14.
Sci Adv ; 8(25): eabn3471, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35731869

RESUMEN

Temozolomide (TMZ) is a chemotherapeutic agent that has been the first-line standard of care for the aggressive brain cancer glioblastoma (GBM) since 2005. Although initially beneficial, TMZ resistance is universal and second-line interventions are an unmet clinical need. Here, we took advantage of the known mechanism of action of TMZ to target guanines (G) and investigated G-rich G-quadruplex (G4) and splice site changes that occur upon TMZ resistance. We report that TMZ-resistant GBM has guanine mutations that disrupt the G-rich DNA G4s and splice sites that lead to deregulated alternative splicing. These alterations create vulnerabilities, which are selectively targeted by either the G4-stabilizing drug TMPyP4 or a novel splicing kinase inhibitor of cdc2-like kinase. Last, we show that the G4 and RNA binding protein EWSR1 aggregates in the cytoplasm in TMZ-resistant GBM cells and patient samples. Together, our findings provide insight into targetable vulnerabilities of TMZ-resistant GBM and present cytoplasmic EWSR1 as a putative biomarker.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , ADN/farmacología , Resistencia a Antineoplásicos/genética , Glioblastoma/metabolismo , Guanina/farmacología , Humanos , Mutación , ARN , Temozolomida/farmacología , Temozolomida/uso terapéutico
15.
Alzheimers Dement (N Y) ; 8(1): e12253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434254

RESUMEN

Introduction: A chemogenomic set of small molecules with annotated activities and implicated roles in Alzheimer's disease (AD) called the AD Informer Set was recently developed and made available to the AD research community: https://treatad.org/data-tools/ad-informer-set/. Methods: Small subsets of AD Informer Set compounds were selected for AD-relevant profiling. Nine compounds targeting proteins expressed by six AD-implicated genes prioritized for study by Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) teams were selected for G-protein coupled receptor (GPCR), amyloid beta (Aß) and tau, and pharmacokinetic (PK) studies. Four non-overlapping compounds were analyzed in microglial cytotoxicity and phagocytosis assays. Results: The nine compounds targeting CAPN2, EPHX2, MDK, MerTK/FLT3, or SYK proteins were profiled in 46 to 47 primary GPCR binding assays. Human induced pluripotent stem cell (iPSC)-derived neurons were treated with the same nine compounds and secretion of Aß peptides (Aß40 and Aß42) as well as levels of phosphophorylated tau (p-tau, Thr231) and total tau (t-tau) peptides measured at two concentrations and two timepoints. Finally, CD1 mice were dosed intravenously to determine preliminary PK and/or brain-specific penetrance values for these compounds. As a final cell-based study, a non-overlapping subset of four compounds was selected based on single-concentration screening for analysis of both cytotoxicity and phagocytosis in murine and human microglia cells. Discussion: We have demonstrated the utility of the AD Informer Set in the validation of novel AD hypotheses using biochemical, cellular (primary and immortalized), and in vivo studies. The selectivity for their primary targets versus essential GPCRs in the brain was established for our compounds. Statistical changes in tau, p-tau, Aß40, and/or Aß42 and blood-brain barrier penetrance were observed, solidifying the utility of specific compounds for AD. Single-concentration phagocytosis results were validated as predictive of dose-response findings. These studies established workflows, validated assays, and illuminated next steps for protein targets and compounds.

16.
ChemMedChem ; 17(12): e202200161, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35403825

RESUMEN

Deep annotation of a library of 4-anilinoquin(az)olines led to the identification of 7-iodo-N-(3,4,5-trimethoxyphenyl)quinolin-4-amine 16 as a potent inhibitor (IC50 =14 nM) of Protein Kinase Novel 3 (PKN3) with micromolar activity in cells. Compound 16 is a potential tool compound to study the cell biology of PKN3 and its role in pancreatic and prostate cancer and T-cell acute lymphoblastic leukemia. These 4-anilinoquin(az)olines may also be useful tools to uncover the therapeutic potential of PKN3 inhibition in a broad range of diseases.


Asunto(s)
Neoplasias de la Próstata , Inhibidores de Proteínas Quinasas , Humanos , Masculino , Proteína Quinasa C , Inhibidores de Proteínas Quinasas/farmacología
17.
Alzheimers Dement (N Y) ; 8(1): e12246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35475262

RESUMEN

Introduction: The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program. Methods: Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many protein products expressed by the genes nominated by AMP AD and suitable positive control compounds to be included in the set. Compounds contained within the set were manually selected and annotated with associated published, predicted, and/or experimental data. Results: We built an annotated set of 171 small molecule modulators targeting 98 unique proteins that have been nominated by AMP AD consortium members as novel targets for the treatment of AD. The majority of compounds included in the set are inhibitors. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which will require further optimization. A physical copy of the AD Informer Set can be requested on the Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) website. Discussion: Small molecules that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.

18.
bioRxiv ; 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35018375

RESUMEN

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine ß-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in ß-coronavirus replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-ß-coronavirus drugs.

19.
Mol Ther ; 30(1): 485-500, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450249

RESUMEN

Serine/threonine kinase 3 (STK3) is an essential member of the highly conserved Hippo tumor suppressor pathway that regulates Yes-associated protein 1 (YAP1) and TAZ. STK3 and its paralog STK4 initiate a phosphorylation cascade that regulates YAP1/TAZ inhibition and degradation, which is important for regulated cell growth and organ size. Deregulation of this pathway leads to hyperactivation of YAP1 in various cancers. Counter to the canonical tumor suppression role of STK3, we report that in the context of prostate cancer (PC), STK3 has a pro-tumorigenic role. Our investigation started with the observation that STK3, but not STK4, is frequently amplified in PC. Additionally, high STK3 expression is associated with decreased overall survival and positively correlates with androgen receptor (AR) activity in metastatic castrate-resistant PC. XMU-MP-1, an STK3/4 inhibitor, slowed cell proliferation, spheroid growth, and Matrigel invasion in multiple models. Genetic depletion of STK3 decreased proliferation in several PC cell lines. In a syngeneic allograft model, STK3 loss slowed tumor growth kinetics in vivo, and biochemical analysis suggests a mitotic growth arrest phenotype. To further probe the role of STK3 in PC, we identified and validated a new set of selective STK3 inhibitors, with enhanced kinase selectivity relative to XMU-MP-1, that inhibited tumor spheroid growth and invasion. Consistent with the canonical role, inhibition of STK3 induced cardiomyocyte growth and had chemoprotective effects. Our results indicate that STK3 has a non-canonical role in PC progression and that inhibition of STK3 may have a therapeutic potential for PC that merits further investigation.


Asunto(s)
Neoplasias de la Próstata , Proteínas Serina-Treonina Quinasas , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Neoplasias de la Próstata/genética , Proteínas Serina-Treonina Quinasas/genética , Serina/farmacología , Serina-Treonina Quinasa 3 , Transducción de Señal
20.
J Med Chem ; 65(2): 1313-1328, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34333981

RESUMEN

The pyrimidine core has been utilized extensively to construct kinase inhibitors, including eight FDA-approved drugs. Because the pyrimidine hinge-binding motif is accommodated by many human kinases, kinome-wide selectivity of resultant molecules can be poor. This liability was seen as an advantage since it is well tolerated by many understudied kinases. We hypothesized that nonexemplified aminopyrimidines bearing side chains from well-annotated pyrimidine-based inhibitors with off-target activity on understudied kinases would provide us with useful inhibitors of these lesser studied kinases. Our strategy paired mixing and matching the side chains from the 2- and 4-positions of the parent compounds with modifications at the 5-position of the pyrimidine core, which is situated near the gatekeeper residue of the binding pocket. Utilizing this approach, we imparted improved kinome-wide selectivity to most members of the resultant library. Importantly, we also identified potent biochemical and cell-active lead compounds for understudied kinases like DRAK1, BMP2K, and MARK3/4.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/química , Sitios de Unión , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...