Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36013911

RESUMEN

Poor workability is a common feature of calcium sulfoaluminate (CSA) cement paste. Multiple chemical admixtures, such as set retarders and dispersants, are frequently employed to improve the workability and delay the setting of CSA cement paste. A quantitative assessment of the compatibility, efficiency, and the effects of the admixtures on cement paste workability is critical for the design of an appropriate paste formulation and admixture proportioning. Very limited studies are available on the quantitative rheology-based method for evaluating the workability of calcium sulfoaluminate cement pastes. This study presents a novel and robust time-dependent rheological method for quantifying the workability of CSA cement pastes modified with the incorporation of citric acid as a set retarder and a polycarboxylate ether (PCE)-based superplasticizer as a dispersant. The yield stress is measured as a function of time, and the resulting curve is applied to quantify three specific workability parameters: (i) the rate at which the paste loses flowability, (ii) the time limit for paste placement or pumping, marking the onset of acceleration to initial setting, and (iii) the rate at which the paste accelerates to final setting. The results of the tested CSA systems show that the rate of the loss of flowability and the rate of hardening decrease monotonously, while the time limit for casting decreases linearly with the increase in citric acid concentration. The dosage rate of PCE has a relatively small effect on the quantified workability parameters, partly due to the competitive adsorption of citrate ions. The method demonstrated here can characterize the interaction or co-influence of multiple admixtures on early-age properties of the cement paste, thus providing a quantitative rheological protocol for determining the workability and a novel approach to material selection and mixture design.

2.
Environ Res ; 198: 110484, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33212134

RESUMEN

The performance of adsorbents prepared by alkali activation of high calcium fly ash was investigated for removing aqueous Zn. Two formulations involving the use of NaOH and Na2SiO3 activating solutions were used to prepare the adsorbents that feature different microstructural characteristics. The Zn sorption data indicates a sorption process that is controlled by both chemisorption and intra-particle diffusion. The Na2SiO3-activated material displayed higher sorption rates compared to the NaOH-activated material. The sorption kinetics show strong dependence on the microstructures of the adsorbents, wherein the Na2SiO3-activated material featuring higher contents of amorphous phases (96 %mass) in the hydrated phase assemblage, with attendant improved porosity and surface area, performed better than the NaOH-activated material (86 %mass amorphous phases) which showed higher degree of crystallinity and coarse morphology. The Na2SiO3-activated material exhibited 100% Zn removal efficiency within the first 5 min in all studied initial adsorbate concentrations(corresponding to sorption capacity of up to 200 mg/g), while the NaOH-activated analogue tends to lag, reaching 99.99% Zn removal efficiency after about 240 min in most cases. The two formulations were also examined with thermodynamic modeling and the results agree with experimental data in indicating that the use of alkali-silicate activating solution is most suitable for converting high calcium fly ash into efficient adsorbent for removing aqueous heavy metals.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Álcalis , Calcio , Ceniza del Carbón , Zinc
3.
ACS Omega ; 5(34): 21689-21699, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32905394

RESUMEN

The geopolymer-an inorganic polymeric material synthesized from the reaction of aluminosilicate precursors and alkaline activating solutions-has gained wide research attention in recent decades as a promising adsorbent for the removal of aqueous heavy metals. However, the high variability of the material and several unanswered questions have limited its development and general adoption in the industry. This study evaluates the impacts of composition and microstructure on the performance of geopolymers for aqueous lead (Pb) removal to elucidate the composition-structure-property relationship. The Pb sorption kinetics and efficiency of four geopolymers, prepared using different fly ash precursors and activating solutions, were investigated. Although all the four geopolymer compositions studied displayed a high Pb removal efficiency of over 99.5%, with a slight decrease in efficiency with increasing Ca/(Si + Al) and Al/Si contents, the results show that the sorption kinetics decreases exponentially with increasing Ca/(Si + Al) and Al/Si molar ratios. The performance of the geopolymers also shows strong correlation to the microstructure, wherein the sorption kinetics increases exponentially, while the efficiency increases slightly, with increasing mass fraction of the amorphous phase in the geopolymer's phase assemblage. The results of this research indicate that using appropriate precursor formulation and curing conditions to evoke the best microstructures, geopolymer materials can be optimized for high performance in removing heavy metals, thereby improving the chances of the material's general acceptability in the adsorbent industry.

4.
Proc Natl Acad Sci U S A ; 105(28): 9483-8, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18621695

RESUMEN

Research on ecosystem services has grown markedly in recent years. However, few studies are embedded in a social process designed to ensure effective management of ecosystem services. Most research has focused only on biophysical and valuation assessments of putative services. As a mission-oriented discipline, ecosystem service research should be user-inspired and user-useful, which will require that researchers respond to stakeholder needs from the outset and collaborate with them in strategy development and implementation. Here we provide a pragmatic operational model for achieving the safeguarding of ecosystem services. The model comprises three phases: assessment, planning, and management. Outcomes of social, biophysical, and valuation assessments are used to identify opportunities and constraints for implementation. The latter then are transformed into user-friendly products to identify, with stakeholders, strategic objectives for implementation (the planning phase). The management phase undertakes and coordinates actions that achieve the protection of ecosystem services and ensure the flow of these services to beneficiaries. This outcome is achieved via mainstreaming, or incorporating the safeguarding of ecosystem services into the policies and practices of sectors that deal with land- and water-use planning. Management needs to be adaptive and should be institutionalized in a suite of learning organizations that are representative of the sectors that are concerned with decision-making and planning. By following the phases of our operational model, projects for safeguarding ecosystem services are likely to empower stakeholders to implement effective on-the-ground management that will achieve resilience of the corresponding social-ecological systems.


Asunto(s)
Conservación de los Recursos Naturales/economía , Ecosistema , Técnicas de Planificación , Ambiente , Investigación , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA