Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
J Fungi (Basel) ; 10(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39330413

RESUMEN

Fungal secondary metabolites (SMs) represent an invaluable source of therapeutic drugs. Genomics-based approaches to SM discovery have revealed a vast and largely untapped biosynthetic potential within fungal genomes. Here, we used the publicly available fungal genome sequences from the NCBI public database, as well as tools such as antiSMASH, BIG-SLiCE, etc., to analyze a total of 11,598 fungal genomes, identifying 293,926 biosynthetic gene clusters (BGCs), which were subsequently categorized into 26,825 gene cluster families (GCFs). It was discovered that only a tiny fraction, less than 1%, of these GCFs could be mapped to known natural products (NPs). Some GCFs that only contain a single BGC internally are crucial for the biodiversity of fungal biosynthesis. Evident patterns emerged from our analysis, revealing popular taxa as prominent sources of both actual and potential biosynthetic diversity. Our study also suggests that the genus rank distribution of GCF is generally consistent with NP diversity. It is noteworthy that genera Xylaria, Hypoxylon, Colletotrichum, Diaporthe, Nemania, and Calonectria appear to possess a higher potential for SM synthesis. In addition, 7213 BGCs match possible known compound structures, and homologous gene clusters of well-known drugs can be located in different genera, facilitating the development of derivatives that share structural similarity to these drugs and may potentially possess similar biological activity. Our study demonstrated the various types of fungi with mining potential, assisting researchers in prioritizing their research efforts and avoiding duplicate mining of known resources to further explore fungal NP producers.

2.
Imeta ; 3(4): e216, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135697

RESUMEN

Hundreds of microbiota gene expressions are significantly different between healthy and diseased humans. The "bottleneck" preventing a mechanistic dissection of how they affect host biology/disease is that many genes are encoded by nonmodel gut commensals and not genetically manipulatable. Approaches to efficiently identify their gene transfer methodologies and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. This paper will introduce a step-by-step protocol to identify gene transfer conditions and build the gene manipulation tools for nonmodel gut microbes, focusing on Gram-negative Bacteroidia and Gram-positive Clostridia organisms. This protocol enables us to identify gene transfer methods and develop gene manipulation tools without prior knowledge of their genome sequences, by targeting bacterial 16s ribosomal RNAs or expanding their compatible replication origins combined with clustered regularly interspaced short palindromic repeats machinery. Such an efficient and generalizable approach will facilitate functional studies that causally connect gut microbiota genes to host diseases.

3.
World J Clin Cases ; 12(24): 5604-5612, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188601

RESUMEN

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is currently the only viable method of curing patients with acute myeloid leukaemia. In 30% to 50% of patients, donors and recipients have some level of ABO blood group incompatibility. ABO blood group incompatibility can cause antibodies against the donor's red blood cells to persist in the recipient's body, resulting in a delay of several months in the recovery of red blood cells. A number of different treatments have been reported for post-transplant pure red cell aplastic anaemia (PRCA), such as plasmapheresis, donor lymphocyte infusions, anti-thymocyte globulin, rituximab and steroids. CASE SUMMARY: A 41-year-old female diagnosed with acute myeloid leukaemia underwent peripheral blood allogeneic haematopoietic stem cell transplantation in November 2013 from an HLA matched unrelated donor. The donor was AB-positive and the recipient was O-positive. The patient was diagnosed with PRCA three months after receiving the donor stem cell transplant. After failing multiple lines of therapy, the patient applied for daratumumab. After receiving three doses of daratumumab, the patient developed a reticulocyte response and no longer required blood transfusions. CONCLUSION: The use of daratumumab anti-CD38 for the remove of plasma cells is safe and effective and may be tried for refractory patients with PRCA after undergoing allo-HSCT for ABO incompatibility.

4.
Ultrason Sonochem ; 109: 107014, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111249

RESUMEN

Buckwheat sprouts are rich in pectic polysaccharides, which possess numerous health-improving benefits. However, the precise structure-activity relationship of pectic polysaccharides from Tartary buckwheat sprouts (TP) is still scant, which ultimately restricts their applications in the food industry. Hence, both ultrasound-assisted Fenton treatment (UAFT) and mild alkali treatment (MATT) were utilized for the modification of TP, and then the effects of physicochemical characteristics of original and modified TPs on their bioactivities were assessed. Our findings reveled that the UAFT treatment could precisely reduce TP's molecular weight, with the levels decreased from 8.191 × 104 Da to 0.957 × 104 Da. Meanwhile, the MATT treatment could precisely reduce TP's esterification degree, with the values decreased from 28.04 % to 4.72 %. Nevertheless, both UAFT and MATT treatments had limited effects on the backbone and branched chain of TP. Moreover, our findings unveiled that the UAFT treatment could notably promote TP's antioxidant, antiglycation, and immunostimulatory effects, while remarkedly reduce TP's anti-hyperlipidemic effect, which were probably owing to that the UAFT treatment obviously reduced TP's molecular weight. Additionally, the MATT treatment could also promote TP's immunostimulatory effect, which was probably attributed to that the MATT treatment significantly decreased TP's esterification degree. Interestingly, the MATT treatment could regulate TP's antioxidant and antiglycation effects, which was probably attributed to that the MATT treatment simultaneously reduced its esterification degree and bound phenolics. Our findings are conducive to understanding TP's structure-activity relationship, and can afford a scientific theoretical basis for the development of functional or healthy products based on TPs. Besides, the UAFT treatment can be a promising approach for the modification of TP to improve its biological functions.


Asunto(s)
Álcalis , Fagopyrum , Polisacáridos , Ondas Ultrasónicas , Fagopyrum/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Álcalis/química , Antioxidantes/química , Antioxidantes/farmacología , Hierro/química , Peróxido de Hidrógeno/química , Fenómenos Químicos , Animales , Peso Molecular
5.
Front Psychiatry ; 15: 1431215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156602

RESUMEN

Background: Rising anxiety and depression in primary school students adversely affect their development and academics, burdening families and schools. This trend necessitates urgent, focused research within this young demographic. This alarming trend calls for a systematic bibliometric analysis to develop effective preventative and remedial strategies. Objectives: This study aims to identify and analyze the prevailing research hotspots and emerging trends concerning anxiety and depression in primary school students, thereby furnishing a foundational reference for future academic endeavors in this area. Methods: This study uses the Web of Science (WOS) Core Collection database as the data source, focusing on literature published between 2013 and 2023 concerning anxiety and depression in primary school students. An initial search identified 1852 articles, which were then manually screened to exclude duplicates, conferences, announcements, and unrelated literature, resulting in 1791 relevant articles. The analysis, executed on December 31, 2023, employed CiteSpace and Vosviewer tools to assess various bibliometric indicators including authorship, country, institutional affiliations, publication trends, keyword frequency, and citation analysis. Results: The analysis revealed a corpus of 1,791 English-language articles, with a discernible upward trend in publications over the decade. The USA and China were the leading countries in this field, with 482and 272 papers, respectively. The research predominantly addresses the etiological factors of anxiety and depression, various intervention strategies, and the comorbidities associated with these conditions in the target population. Key research focuses have been identified in areas such as suicidal thoughts, bullying in schools, the impact of COVID-19, mindfulness interventions, and anxiety related to mathematics. Future research is projected to increasingly focus on the effects of mathematics anxiety on the psychological and behavioral outcomes in students. Conclusion: This study provides a critical visual and analytical overview of the key research areas and trends in the field of anxiety and depression among primary school students. It underscores the necessity of concentrating on the underlying causes and potential interventions. Such focused research is imperative for mitigating the mental health challenges faced by young students and enhancing their educational and developmental outcomes.

6.
Plant Cell Environ ; 47(11): 4354-4368, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38965879

RESUMEN

Thrips, Frankliniella intonsa, is a highly polyphagous pest with a worldwide distribution. F. intonsa-infested sunflower seeds show marked visual damage. The study findings revealed that significantly more F. intonsa infested confection sunflower compared to oilseed sunflower, via olfactometer bioassay studies, we found that compared with the flower and pollen of oilseed sunflowers, those of confection sunflowers attract F. intonsa. Considering this discrepancy in the preference of F. intonsa on oilseed and confection sunflowers, the volatiles of the flower and pollens of two sunflowers were analysed by gas chromatography-mass spectroscopy. The behavioural responses of F. intonsa were assessed for these compounds using Y-tube bioassays. Geranyl bromide, a unique volatile component of oilseed sunflowers, induced an assertive approach-avoidance behaviour in F. intonsa, whereas the unique component ethyl isovalerate in confection sunflowers attracted F. intonsa. F. intonsa adults demonstrated significant attraction to the blends of confection sunflowers. Furthermore, field verification revealed that intercropping confection and oilseed sunflowers could effectively control F. intonsa. The study provided insights into the chemical cues used by F. intonsa in locating hosts. Therefore, oilseed sunflowers can be used as repellent plants to prevent F. intonsa invasion.


Asunto(s)
Flores , Helianthus , Thysanoptera , Compuestos Orgánicos Volátiles , Helianthus/fisiología , Helianthus/metabolismo , Animales , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Flores/fisiología , Thysanoptera/fisiología , Cromatografía de Gases y Espectrometría de Masas , Polen/química , Conducta Animal/fisiología , Semillas/química , Semillas/fisiología , Semillas/metabolismo
7.
World J Gastrointest Oncol ; 16(6): 2419-2428, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38994147

RESUMEN

BACKGROUND: The relationship between metabolic syndrome (MetS) and gastric cancer (GC), which is a common metabolic disease, has attracted much attention. However, the specific metabolic characteristics of MetS in elderly patients with GC remain unclear. AIM: To investigate the differentially abundant metabolites and metabolic pathways between preoperative frailty and MetS in elderly patients with GC based on nontargeted metabolomics techniques. METHODS: In this study, 125 patients with nonfrail nonmeal GC were selected as the control group, and 50 patients with GC in the frail group were selected as the frail group. Sixty-five patients with GC combined with MetS alone were included in the MetS group, and 50 patients with GC combined with MetS were included in the MetS group. Nontargeted metabolomics techniques were used to measure plasma metabolite levels by ultrahigh-performance liquid chromatography-mass spectrometry. Multivariate statistical analysis was performed by principal component analysis, orthogonal partial least squares, pattern recognition analysis, cluster analysis, and metabolic pathway annotation. RESULTS: A total of 125 different metabolites, including amino acids, glycerophospholipids, sphingolipids, fatty acids, sugars, nucleosides and nucleotides, and acidic compounds, were identified via nontargeted metabolomics techniques. Compared with those in the control group, there were 41, 32, and 52 different metabolites in the MetS group, the debilitated group, and the combined group, respectively. Lipid metabolites were significantly increased in the MetS group. In the weak group, amino acids and most glycerol phospholipid metabolites decreased significantly, and fatty acids and sphingosine increased significantly. The combined group was characterized by significantly increased levels of nucleotide metabolites and acidic compounds. The alanine, aspartic acid, and glutamate metabolic pathways were obviously enriched in the asthenic group, and the glycerol and phospholipid metabolic pathways were obviously enriched in the combined group. CONCLUSION: Elderly GC patients with simple frailty, simple combined MetS, and frailty combined with MetS have different metabolic characteristics, among which amino acid and glycerophospholipid metabolite levels are significantly lower in frail elderly GC patients, and comprehensive supplementation of fat and protein should be considered. Many kinds of metabolites, such as amino acids, lipids, nucleotides, and acidic compounds, are abnormally abundant in patients with MetS combined with fthenia, which may be related to tumor-related metabolic disorders.

8.
J Agric Food Chem ; 72(30): 16825-16834, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39020512

RESUMEN

Fungi produce various bioactive secondary metabolites (SMs) as protective and weaponized tools to enhance survival in shared ecological niches. By mimicking a competitive ecosystem, cocultivation has been proven to be particularly successful in stimulating SM discovery. Here, we reported the identification of four novel metabolites, epiclactones A and B, epioxochromane and aoergostane, from the coculture of two biotechnologically important strains, Aspergillus oryzae and Epicoccum dendrobii. Transcriptome and metabolome analyses revealed widespread silent gene activation during fungal-fungal interaction. The majority of differentially expressed gene clusters were summarized for both strains. Based on these highly activated biosynthetic pathways, we suggested that a bidirectional chemical defense occurred under cocultivation. E. dendrobii enhanced the production of the spore inhibitor, fumigermin. Moreover, A. oryzae highly accumulated the antifungal agent kojic acid with a yield of up to 1.10 g/L. This study provides an excellent example for the discovery of hidden natural products by cocultivation.


Asunto(s)
Ascomicetos , Aspergillus oryzae , Técnicas de Cocultivo , Aspergillus oryzae/metabolismo , Aspergillus oryzae/genética , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Metabolismo Secundario , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
9.
Clin Exp Med ; 24(1): 169, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052154

RESUMEN

Endoplasmic reticulum stress (ERS) is a critical factor influencing lung adenocarcinoma (LUAD) progression and patient outcomes. In this study, we analyzed gene expression data from LUAD samples sourced from The Cancer Genomic Atlas and Gene Expression Omnibus databases. Utilizing advanced statistical methods including LASSO and Cox regression, we developed a ERS-associated signature (ERAS) based on ten ERS-related genes. This model stratified patients into high- and low-risk groups, with the high-risk group exhibiting decreased survival rates, elevated tumor mutational burden, and heightened chemotherapy sensitivity. Additionally, we observed lower immune and ESTIMATE scores in the high-ERAS group, indicating a potentially compromised immune response. Experimental validation through quantitative real-time polymerase chain reaction confirmed the utility of our model. Furthermore, we constructed a nomogram to predict 1-, 3-, and 5-year survival rates, providing clinicians with a valuable tool for personalized patient management. In conclusion, our study demonstrates the efficacy of the ERAS in identifying high-ERAS LUAD patients, offering promising implications for improved prognostication and treatment strategies.


Asunto(s)
Adenocarcinoma del Pulmón , Estrés del Retículo Endoplásmico , Inmunoterapia , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/inmunología , Pronóstico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Inmunoterapia/métodos , Femenino , Masculino , Nomogramas , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Anciano , Regulación Neoplásica de la Expresión Génica , Análisis de Supervivencia
10.
Heliyon ; 10(13): e33621, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040288

RESUMEN

Background: Recently, male fertility preservation before cancer treatment has become more prevalent. The research in this field has progressed over time, with some studies having a major impact and providing guidance for further research. However, the trends and hotspots of research on fertility preservation in male cancer patients may have changed; exploring them is essential for relevant research progress. Design: We extracted relevant studies from the Web of Science Core Collection database, capturing information on the countries of study, affiliations, authors, keywords, as well as co-citations of references and journals. To identify publication trends, research strengths, key subjects, prominent topics, and emerging areas, we conducted a bibliometric analysis using CiteSpace. Results: We included 3201 articles on fertility preservation in male cancer patients published over January 1999 to December 2023 were included. Although the relevant research growth rate was slow initially, the number of publications increased annually. Of all study countries, the United States, Germany, and Japan reported the earliest studies; the United States published the highest number of relevant studies. The US institutions remained at the forefront for all 25 years, and the US researcher Ashok Agarwal published the most articles. Literature co-citation analyses indicated a transformation in the study participants; they comprised a younger demographic (i.e., a large number of adolescent male patients underwent fertility preservation); moreover, fertility preservation techniques evolved from sperm cryopreservation to testicular tissue cryopreservation. Research on reproductive outcomes of sperm cryopreservation was the recent hotspot in male fertility preservation research, and the impact of immunotherapy and checkpoint inhibitors on male fertility requires further research. Conclusions: Male fertility preservation will be a major future research focus, with closer connections and collaborations between countries and organizations. Our results present the historical data on the development of research on male fertility preservation in cancer patients, providing relevant insights for future research and development in this study area.

11.
Imeta ; 3(2): e192, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882500

RESUMEN

In this work, we introduced a siderophore information database (SIDERTE), a digitized siderophore information database containing 649 unique structures. Leveraging this digitalized data set, we gained a systematic overview of siderophores by their clustering patterns in the chemical space. Building upon this, we developed a functional group-based method for predicting new iron-binding molecules with experimental validation. Expanding our approach to the collection of open natural products (COCONUT) database, we predicted a staggering 3199 siderophore candidates, showcasing remarkable structure diversity that is largely unexplored. Our study provides a valuable resource for accelerating the discovery of novel iron-binding molecules and advancing our understanding of siderophores.

12.
Environ Sci Technol ; 58(26): 11411-11420, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38887934

RESUMEN

Antimony (Sb) isotopic fractionation is frequently used as a proxy for biogeochemical processes in nature. However, to date, little is known about Sb isotope fractionation in biologically driven reactions. In this study, Pseudomonas sp. J1 was selected for Sb isotope fractionation experiments with varying initial Sb concentration gradients (50-200 µM) at pH 7.2 and 30 °C. Compared to the initial Sb(III) reservoir (δ123Sb = 0.03 ± 0.01 ∼ 0.06 ± 0.01‰), lighter isotopes were preferentially oxidized to Sb(V). Relatively constant isotope enrichment factors (ε) of -0.62 ± 0.06 and -0.58 ± 0.02‰ were observed for the initial Sb concentrations ranging between 50 and 200 µM during the first 22 days. Therefore, the Sb concentration has a limited influence on Sb isotope fractionation during Sb(III) oxidation that can be described by a kinetically dominated Rayleigh fractionation model. Due to the decrease in the Sb-oxidation rate by Pseudomonas sp. J1, observed for the initial Sb concentration of 200 µM, Sb isotope fractionation shifted toward isotopic equilibrium after 22 days, with slightly heavy Sb(V) after 68 days. These findings provide the prospect of using Sb isotopes as an environmental tracer in the Sb biogeochemical cycle.


Asunto(s)
Antimonio , Isótopos , Oxidación-Reducción , Pseudomonas , Antimonio/metabolismo , Pseudomonas/metabolismo , Cinética , Fraccionamiento Químico
13.
Food Res Int ; 187: 114395, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763655

RESUMEN

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Asunto(s)
Antioxidantes , Chenopodium quinoa , Esterificación , Chenopodium quinoa/química , Relación Estructura-Actividad , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/análisis , Pectinas/química , Polisacáridos/química , Prebióticos , Animales , Ratones , Alimentos Funcionales , Células RAW 264.7 , FN-kappa B/metabolismo
14.
Cell Host Microbe ; 32(6): 964-979.e7, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38754418

RESUMEN

The gut microbiota is closely linked to atherosclerosis. However, the role of intestinal fungi, essential members of the complex microbial community, in atherosclerosis is poorly understood. Herein, we show that gut fungi dysbiosis is implicated in patients with dyslipidemia, characterized by higher levels of Candida albicans (C. albicans), which are positively correlated with plasma total cholesterol and low-density lipoprotein-cholesterol (LDL-C) levels. Furthermore, C. albicans colonization aggravates atherosclerosis progression in a mouse model of the disease. Through gain- and loss-of-function studies, we show that an intestinal hypoxia-inducible factor 2α (HIF-2α)-ceramide pathway mediates the effect of C. albicans. Mechanistically, formyl-methionine, a metabolite of C. albicans, activates intestinal HIF-2α signaling, which drives increased ceramide synthesis to accelerate atherosclerosis. Administration of the HIF-2α selective antagonist PT2385 alleviates atherosclerosis in mice by reducing ceramide levels. Our findings identify a role for intestinal fungi in atherosclerosis progression and highlight the intestinal HIF-2α-ceramide pathway as a target for atherosclerosis treatment.


Asunto(s)
Aterosclerosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Candida albicans , Ceramidas , Transducción de Señal , Animales , Candida albicans/metabolismo , Aterosclerosis/microbiología , Aterosclerosis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ratones , Humanos , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino , Microbioma Gastrointestinal/fisiología , Intestinos/microbiología , Intestinos/patología , Disbiosis/microbiología , Femenino , Candidiasis/microbiología , Candidiasis/metabolismo
15.
Int J Hematol ; 120(2): 157-166, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814500

RESUMEN

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.


Asunto(s)
Diferenciación Celular , Eritropoyesis , Hemina , Leucemia Eritroblástica Aguda , Co-Represor 1 de Receptor Nuclear , Humanos , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Células Eritroides/metabolismo , Células Eritroides/citología , Eritropoyesis/genética , Técnicas de Silenciamiento del Gen , Hemina/farmacología , Hemoglobinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Células K562 , Leucemia Eritroblástica Aguda/patología , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética
16.
Ultrason Sonochem ; 106: 106895, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705082

RESUMEN

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) leaf has abundant rhamnogalacturonan-I enriched pectic polysaccharides, which exert various health-promoting effects. Nevertheless, the potential relationship between the chemical structure and the biological function of pectic polysaccharides from Tartary buckwheat leaves (TBP) remains unclear. Therefore, to bridge the gap between the chemical structure and the biological function of TBP, the impacts of ultrasound-assisted Fenton degradation (UFD) and mild alkaline de-esterification (MAD) on structural properties and biological effects of TBP were systematically studied. Compared with the native TBP (molecular mass, 9.537 × 104 Da), the molecular masses of degraded TBPs (TBP-MMW, 4.811 × 104 Da; TBP-LMW, 2.101 × 104 Da) were significantly reduced by the UFD modification, while their primary chemical structures were overall stable. Besides, compared with the native TBP (esterification degree, 22.73 %), the esterification degrees of de-esterified TBPs (TBP-MDE, 14.27 %; TBP-LDE, 6.59 %) were notably reduced by the MAD modification, while their primary chemical structures were also overall stable. Furthermore, the results revealed that both UFD and MAD modifications could significantly improve the antioxidant, antiglycation, and immunostimulatory effects of TBP. Indeed, TBP's biological effects were negatively correlated to its molecular mass and esterification degree, while positively linked to its free uronic acids. The findings demonstrate that both UFD and MAD modifications are promising techniques for the structural modification of TBP, which can remarkedly promote its biological effects. Besides, the present results are conducive to better understanding TBP's structure-bioactivity relationship.


Asunto(s)
Fagopyrum , Pectinas , Hojas de la Planta , Ondas Ultrasónicas , Hojas de la Planta/química , Fagopyrum/química , Esterificación , Pectinas/química , Pectinas/farmacología , Hierro/química , Peróxido de Hidrógeno/química , Antioxidantes/química , Antioxidantes/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Animales
17.
Sci Total Environ ; 933: 172990, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38710395

RESUMEN

Antimony (Sb) is a toxic heavy metal that severely inhibits plant growth and development and threatens human health. Tall fescue, one of the most widely used grasses, has been reported to tolerate heavy metal stress. However, the adaptive mechanisms of Sb stress in tall fescue remain largely unknown. In this study, transcriptomic and metabolomic techniques were applied to elucidate the molecular mechanism of the Sb stress response in tall fescue. These results showed that the defense process in tall fescue was rapidly triggered during the early stages of Sb stress. Sb stress had toxic effects on tall fescue, and the cell wall and voltage-gated channels are crucial for regulating Sb permeation into the cells. In addition, the pathway of glycine, serine and threonine metabolism may play key roles in the Sb stress response of tall fescue. Genes such as ALDH7A1 and AGXT2 and metabolites such as aspartic acid, pyruvic acid, and biuret, which are related to biological processes and pathways, were key genes and compounds in the Sb stress response of tall fescue. Therefore, the regulatory mechanisms of specific genes and pathways should be investigated further to improve Sb stress tolerance.


Asunto(s)
Antimonio , Festuca , Estrés Fisiológico , Transcriptoma , Festuca/metabolismo , Festuca/efectos de los fármacos , Festuca/genética , Antimonio/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Metabolómica , Metaboloma/efectos de los fármacos
18.
Sci Total Environ ; 933: 172972, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735328

RESUMEN

Antimony (Sb) isotopes hold immense promise for unraveling Sb biogeochemical cycling in environmental systems. Mn oxides help control the fate of Sb via adsorption reactions, yet the behavior and mechanisms of Sb isotopic fractionation on Mn oxides are poorly understood. In this study, we examine the Sb isotopic fractionation induced by adsorption on ß-MnO2 in different experiments (kinetic, isothermal, effect of pH). We observe that adsorption on ß-MnO2 surfaces preferentially enriches lighter Sb isotopes through equilibrium fractionation, with Δ123Sbaqueous-adsorbed of 0.55-0.79 ‰. Neither the pH or surface coverage affects the fractionation magnitude. The analysis of extended X-ray absorption fine structure (EXAFS) demonstrates that the enrichment of light isotope results from the adsorption of inner-sphere complexation on solids. Our finding of this study enhances our comprehension of the impact of ß-MnO2 on Sb isotopic fractionation behavior and mechanism and facilitate the applicability of Sb isotopes as effective tracers to elucidate the origins and pathways of Sb contamination in environmental systems, as well as provide a new insight into forecasting the isotopic fractionation of other similar metals adsorbed by manganese oxides.

19.
Microbiome ; 12(1): 86, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730492

RESUMEN

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Asunto(s)
Diferenciación Celular , Clostridiales , Microbioma Gastrointestinal , Linfocitos T Reguladores , Trichuris , Animales , Linfocitos T Reguladores/inmunología , Ratones , Malasia , Clostridiales/aislamiento & purificación , Humanos , Ácidos Grasos Volátiles/metabolismo , Femenino , Tricuriasis/parasitología , Tricuriasis/inmunología , Tricuriasis/microbiología
20.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657606

RESUMEN

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Asunto(s)
Aminoácidos de Cadena Ramificada , Aminoácidos , Microbioma Gastrointestinal , Homeostasis , Triptófano , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Triptófano/metabolismo , Ratones Endogámicos C57BL , Nutrientes/metabolismo , Intestinos/microbiología , Humanos , Metabolómica , Glucosa/metabolismo , Serotonina/metabolismo , Vida Libre de Gérmenes , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA