Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Plants ; 9(12): 2042-2058, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38066290

RESUMEN

Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Homeostasis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Factores de Transcripción/metabolismo , ARN Mensajero/metabolismo , Metilación de ARN
3.
Nucleic Acids Res ; 51(21): 11568-11583, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37850650

RESUMEN

The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.


Asunto(s)
Plantas , Factores de Transcripción , Vocabulario , Cromatina , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas/genética
4.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35008526

RESUMEN

Strawberry is a soft fruit with short postharvest life, due to a rapid loss of firmness. Pectin methylesterase (PME)-mediated cell wall remodeling is important to determine fruit firmness and softening. Previously, we have verified the essential role of FvPME38 in regulation of PME-mediated strawberry fruit softening. However, the regulatory network involved in PME-mediated fruit softening is still largely unknown. Here, we identified an R2R3-type MYB transcription factor FvMYB79, which activates the expression level of FvPME38, thereby accelerating fruit softening. During fruit development, FvMYB79 co-expressed with FvPME38, and this co-expression pattern was opposite to the change of fruit firmness in the fruit of 'Ruegen' which significantly decreased during fruit developmental stages and suddenly became very low after the color turning stage. Via transient transformation, FvMYB79 could significantly increase the transcriptional level of FvPME38, leading to a decrease of firmness and acceleration of fruit ripening. In addition, silencing of FvMYB79 showed an insensitivity to ABA-induced fruit ripening, suggesting a possible involvement of FvMYB79 in the ABA-dependent fruit softening process. Our findings suggest FvMYB79 acts as a novel regulator during strawberry ripening via transcriptional activation of FvPME38, which provides a novel mechanism for improvement of strawberry fruit firmness.


Asunto(s)
Fragaria/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Pared Celular/genética , Redes Reguladoras de Genes/genética , Factores de Transcripción/genética
5.
New Phytol ; 229(2): 963-978, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901934

RESUMEN

To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Lípidos , Proteínas de Plantas , Raíces de Plantas , Ácido Salicílico
6.
BMC Plant Biol ; 20(1): 13, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31914938

RESUMEN

BACKGROUND: Pectin methylesterase (PME) is a hydrolytic enzyme that catalyzes the demethylesterification of homogalacturonans and controls pectin reconstruction, being essential in regulation of cell wall modification. During fruit ripening stage, PME-mediated cell wall remodeling is an important process to determine fruit firmness and softening. Strawberry fruit is a soft fruit with a short postharvest life, due to a rapid loss of firm texture. Hence, preharvest improvement of strawberry fruit rigidity is a prerequisite for extension of fruit refreshing time. Although PME has been well characterized in model plants, knowledge regarding the functionality and evolutionary property of PME gene family in strawberry remain limited. RESULTS: A total of 54 PME genes (FvPMEs) were identified in woodland strawberry (Fragaria vesca 'Hawaii 4'). Phylogeny and gene structure analysis divided these FvPME genes into four groups (Group 1-4). Duplicate events analysis suggested that tandem and dispersed duplications effectively contributed to the expansion of the PME family in strawberry. Through transcriptome analysis, we identified FvPME38 and FvPME39 as the most abundant-expressed PMEs at fruit ripening stages, and they were positively regulated by abscisic acid. Genetic manipulation of FvPME38 and FvPME39 by overexpression and RNAi-silencing significantly influences the fruit firmness, pectin content and cell wall structure, indicating a requirement of PME for strawberry fruit softening. CONCLUSION: Our study globally analyzed strawberry pectin methylesterases by the approaches of phylogenetics, evolutionary prediction and genetic analysis. We verified the essential role of FvPME38 and FvPME39 in regulation of strawberry fruit softening process, which provided a guide for improving strawberry fruit firmness by modifying PME level.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Fragaria , Frutas/metabolismo , Pectinas/metabolismo , Ácido Abscísico/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Perfilación de la Expresión Génica , Genes de Plantas , Filogenia , Interferencia de ARN
7.
BMC Plant Biol ; 19(1): 528, 2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31783789

RESUMEN

BACKGROUND: Axillary buds allow the production of either vegetative or reproductive shoots, which display a plastic developmental potential of the plant to suit the prevailing environmental changes. Strawberry represents one of many plant species which displays horizontal above-ground growth of shoot development for asexual reproduction. Two distinct runner growth patterns exist in different strawberry species: one is called sympodial type such as Fragaria vesca, and the other one is called monopodial type such as Fragaria pentaphylla. Despite the runner growth morphology of these strawberry species have been well known, the mechanisms that determine the distinct patterns have rarely been reported. RESULTS: In this study, we used Fragaria vesca Hawaii-4 and Fragaria pentaphylla as model species, and captured the initiated dormant bud and non-dormant bud as materials to compare their transcriptome profiles and phytohormone content. Comparisons revealed that relatively higher auxin activity is present in the dormant bud and relatively higher cytokinin activity is in the non-dormant bud. Decapitation and pharmacological experiments on dormant buds showed that the reduction of auxin accumulation triggers the regeneration of vegetative shoots in dormant buds, and exogenous cytokinin application triggers cell fate turnover and generation of reproductive shoots. CONCLUSION: Here, we uncover a mechanism by which auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. Our results suggest a contrasting behavior of auxin and cytokinin in control of axillary bud development, facilitating a preliminary understanding of shoot architecture formation in strawberry.


Asunto(s)
Citocininas/metabolismo , Fragaria/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Latencia en las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Citocininas/farmacología , Especies en Peligro de Extinción , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...