Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 136: 112380, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38850790

RESUMEN

BACKGROUND AND AIMS: Impaired intestinal barrier function is key in maintaining intestinal inflammation in Crohn's disease (CD). However, no targeted treatment in clinical practice has been developed. Peiminine (Pm) strongly protects the epithelial barrier, the purpose of this study is to investigate whether Pm affects CD-like colitis and potential mechanisms for its action. METHODS: Trinitro-benzene-sulfonic acid (TNBS)-induced mice and Il-10-/- mice were used as CD animal models. Colitis symptoms, histological analysis, and intestinal barrier permeability were used to assess the Pm's therapeutic effect on CD-like colitis. The colon organoids were induced by TNF-α to evaluate the direct role of Pm in inhibiting apoptosis of the intestinal epithelial cells. Western blotting and small molecule inhibitors were used to investigate further the potential mechanism of Pm in inhibiting apoptosis of intestinal epithelial cells. RESULTS: Pm treatment reduced body weight loss, disease activity index (DAI) score, and inflammatory score, demonstrating that colonic inflammation in mice were alleviated. Pm decreased the intestinal epithelial apoptosis, improved the intestinal barrier function, and prevented the loss of tight junction proteins (ZO1 and claudin-1) in the colon of CD mice and TNF-α-induced colonic organoids. Pm activated Nrf2/HO1 signaling, which may protect intestinal barrier function. CONCLUSIONS: Pm inhibits intestinal epithelial apoptosis in CD mice by activating Nrf2/HO1 pathway. This partially explains the potential mechanism of Pm in ameliorating intestinal barrier function in mice and provides a new approach to treating CD.


Asunto(s)
Apoptosis , Colitis , Enfermedad de Crohn , Modelos Animales de Enfermedad , Mucosa Intestinal , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Ácido Trinitrobencenosulfónico , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/patología , Ratones , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Masculino , Colon/patología , Colon/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Interleucina-10/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas de la Membrana
2.
World J Gastrointest Oncol ; 16(5): 2091-2112, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764846

RESUMEN

BACKGROUND: For the first time, we investigated the oncological role of plexin domain-containing 1 (PLXDC1), also known as tumor endothelial marker 7 (TEM7), in hepatocellular carcinoma (HCC). AIM: To investigate the oncological profile of PLXDC1 in HCC. METHODS: Based on The Cancer Genome Atlas database, we analyzed the expression of PLXDC1 in HCC. Using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting, we validated our results. The prognostic value of PLXDC1 in HCC was analyzed by assessing its correlation with clinicopathological features, such as patient survival, methylation level, tumor immune microenvironment features, and immune cell surface checkpoint expression. Finally, to assess the immune evasion potential of PLXDC1 in HCC, we used the tumor immune dysfunction and exclusion (TIDE) website and immunohistochemical staining assays. RESULTS: Based on immunohistochemistry, qRT-PCR, and Western blot assays, overexpression of PLXDC1 in HCC was associated with poor prognosis. Univariate and multivariate Cox analyses indicated that PLXDC1 might be an independent prognostic factor. In HCC patients with high methylation levels, the prognosis was worse than in patients with low methylation levels. Pathway enrichment analysis of HCC tissues indicated that genes upregulated in the high-PLXDC1 subgroup were enriched in mesenchymal and immune activation signaling, and TIDE assessment showed that the risk of immune evasion was significantly higher in the high-PLXDC1 subgroup compared to the low-PLXDC1 subgroup. The high-risk group had a significantly lower immune evasion rate as well as a poor prognosis, and PLXDC1-related risk scores were also associated with a poor prognosis. CONCLUSION: As a result of this study analyzing PLXDC1 from multiple biological perspectives, it was revealed that it is a biomarker of poor prognosis for HCC patients, and that it plays a role in determining immune evasion status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA