Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Food ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149800

RESUMEN

Many herbs have been shown to safely and successfully treat hyperlipidemia. However, the molecular mechanisms underlying their treatment remain unclear. In this study, 103 prescriptions for the treatment of hyperlipidemia containing 146 herbs were screened. Cluster analyses identified a core prescription comprising five herbs, namely, Crataegus pinnatifida (Shan Zha), Cassiae semen (Jue Ming Zi), Alisma orientale (Sam.) Juz. (Ze Xie), Salvia miltiorrhiza (Dan Shen), and Radix Polygoni Multiflori (He Shou Wu), in combination for the treatment of hyperlipidemia. Next, 9, 62, 5, 132, and 34 potential targets for each of the core herbs and a total of 512 hyperlipidemia-related protein targets were detected. Finally, 40 targets shared by core herbs and hyperlipidemia were identified. IL6, AKT1, IL1B, PTGS2, VEGFA, PPARG, and NOS3 were the seven proteins that were found to be most important in the treatment of hyperlipidemia. Interestingly, the Kyoto Encyclopedia of Genes and Genomes pathway indicated that these targets were mainly enriched in the lipid and atherosclerosis pathway and the cancer pathway. In addition, core target proteins such as AKT1, PTGS2, and PPARG have been demonstrated to play critical roles in hyperlipidemia and pancreatic cancer. Significant affinity between bioactive chemicals and proteins involved in cancer pathways was found by molecular docking. Molecular docking results showed that AKT1, PTGS2, and PPARG exhibited good binding ability with three bioactive chemicals, including 3-beta-hydroxymethyllenetanshiquinone, danshexinkum d, and physciondiglucoside. The treatment of hyperlipidemia by herbs may be mediated through the modulation of proteins associated with the cancer pathway. This study helps to provide a theoretical basis for future combined therapy for hyperlipidemia and cancer. [Figure: see text].

2.
Chemistry ; 30(37): e202400945, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38690799

RESUMEN

The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11 % per cycle without catalyst (initial capacity of 701 mAh g-1) to 0.054 % per cycle (initial capacity of 1074 mAh g-1) over 400 cycles at 0.2 C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.

3.
Artículo en Inglés | MEDLINE | ID: mdl-30680191

RESUMEN

BACKGROUND: Urea pretreatment is an efficient strategy to improve fiber digestibility of low quality roughages for ruminants. Nitrate and oil are usually used to inhibit enteric methane (CH4) emissions from ruminants. The objective of this study was to examine the combined effects of urea plus nitrate pretreated rice straw and corn oil supplementation to the diet on nutrient digestibility, nitrogen (N) balance, CH4 emissions, ruminal fermentation characteristics and microbiota in goats. Nine female goats were used in a triple 3 × 3 Latin Square design (27 d periods). The treatments were: control (untreated rice straw, no added corn oil), rice straw pretreated with urea and nitrate (34 and 4.7 g/kg of rice straw on a dry matter [DM] basis, respectively, UN), and UN diet supplemented with corn oil (15 g/kg soybean and 15 g/kg corn were replaced by 30 g/kg corn oil, DM basis, UNCO). RESULTS: Compared with control, UN increased neutral detergent fiber (NDF) digestibility (P < 0.001) and copies of protozoa (P < 0.001) and R. albus (P < 0.05) in the rumen, but decreased N retention (-21.2%, P < 0.001), dissolved hydrogen concentration (-22.8%, P < 0.001), molar proportion of butyrate (-18.2%, P < 0.05), (acetate + butyrate) to propionate ratio (P < 0.05) and enteric CH4 emissions (-10.2%, P < 0.05). In comparison with UN, UNCO increased N retention (+34.9%, P < 0.001) and decreased copies of protozoa (P < 0.001) and methanogens (P < 0.001). Compared with control, UNCO increased NDF digestibility (+8.3%, P < 0.001), reduced ruminal dissolved CH4 concentration (-24.4%, P < 0.001) and enteric CH4 emissions (-12.6%, P < 0.05). CONCLUSIONS: A combination of rice straw pretreated with urea plus nitrate and corn oil supplementation of the diet improved fiber digestibility and lowered enteric CH4 emissions without negative effects on N retention. These strategies improved the utilization of rice straw by goats.

4.
J Sci Food Agric ; 98(14): 5205-5211, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29635854

RESUMEN

BACKGROUND: Urea pretreatment of straw damages fiber structure, while nitrate supplementation of ruminal diets inhibits enteric methane production. The study examined the combined effects of these treatments on ruminal substrate biodegradation and methane production using an in vitro incubation system. Rice and wheat straws were pretreated with urea (40 g kg-1 straw dry matter, DM) and urea + ammonium nitrate (34 + 6 g kg-1 dry matter (DM), respectively), and each straw (control, urea, urea+nitrate) was used in batch culture incubations in three replications (runs). RESULTS: Urea pretreatment increased (P < 0.05) neutral-detergent solubles (NDS) content (+17%) and in vitro DM degradation of rice straw, in comparison with control. Urea+nitrate pretreatment of rice and wheat straws had higher (P < 0.05) NDS content, in vitro DM degradation and propionate molar proportion, and lower (P < 0.05) acetate:propionate ratio and lower methane production with a decline of methanogens, in comparison to control. CONCLUSIONS: Urea+nitrate pretreatment combines positive effects of urea pretreatment and nitrate supplementation, and can be a potential strategy to improve ruminal biodegradation, facilitate propionate production and reduce methane production from lignified straws. © 2018 Society of Chemical Industry.


Asunto(s)
Metano/metabolismo , Oryza/metabolismo , Rumen/metabolismo , Triticum/metabolismo , Alimentación Animal/análisis , Animales , Ganado/metabolismo , Metano/análisis , Nitratos/química , Oryza/química , Propionatos/análisis , Propionatos/metabolismo , Rumen/química , Triticum/química , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA