Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Curr Biol ; 34(8): 1705-1717.e6, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38574729

RESUMEN

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.


Asunto(s)
Quitina , Quitosano , Medicago truncatula , Micorrizas , Proteínas de Plantas , Simbiosis , Micorrizas/fisiología , Quitina/metabolismo , Medicago truncatula/microbiología , Medicago truncatula/metabolismo , Medicago truncatula/inmunología , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Inmunidad de la Planta , Oligosacáridos/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo
2.
New Phytol ; 242(5): 2195-2206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571285

RESUMEN

Legume nodulation requires the detection of flavonoids in the rhizosphere by rhizobia to activate their production of Nod factor countersignals. Here we investigated the flavonoids involved in nodulation of Medicago truncatula. We biochemically characterized five flavonoid-O-methyltransferases (OMTs) and a lux-based nod gene reporter was used to investigate the response of Sinorhizobium medicae NodD1 to various flavonoids. We found that chalcone-OMT 1 (ChOMT1) and ChOMT3, but not OMT2, 4, and 5, were able to produce 4,4'-dihydroxy-2'-methoxychalcone (DHMC). The bioreporter responded most strongly to DHMC, while isoflavones important for nodulation of soybean (Glycine max) showed no activity. Mutant analysis revealed that loss of ChOMT1 strongly reduced DHMC levels. Furthermore, chomt1 and omt2 showed strongly reduced bioreporter luminescence in their rhizospheres. In addition, loss of both ChOMT1 and ChOMT3 reduced nodulation, and this phenotype was strengthened by the further loss of OMT2. We conclude that: the loss of ChOMT1 greatly reduces root DHMC levels; ChOMT1 or OMT2 are important for nod gene activation in the rhizosphere; and ChOMT1/3 and OMT2 promote nodulation. Our findings suggest a degree of exclusivity in the flavonoids used for nodulation in M. truncatula compared to soybean, supporting a role for flavonoids in rhizobial host range.


Asunto(s)
Chalconas , Medicago truncatula , Nodulación de la Raíz de la Planta , Rizosfera , Medicago truncatula/genética , Medicago truncatula/microbiología , Medicago truncatula/metabolismo , Chalconas/metabolismo , Nodulación de la Raíz de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Flavonoides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sinorhizobium/fisiología , Sinorhizobium/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética
3.
Front Plant Sci ; 15: 1363182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504900

RESUMEN

Alfalfa (Medicago sativa L.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility. We employed a multiplex CRISPR/Cas9-mediated gene-editing system to reduce lignin content and alter lignin composition in alfalfa by targeting the COUMARATE 3-HYDROXYLASE (MsC3H) gene, which encodes a key enzyme in lignin biosynthesis. Four guide RNAs (gRNAs) targeting the first exon of MsC3H were designed and clustered into a tRNA-gRNA polycistronic system and introduced into tetraploid alfalfa via Agrobacterium-mediated transformation. Out of 130 transgenic lines, at least 73 lines were confirmed to contain gene-editing events in one or more alleles of MsC3H. Fifty-five lines were selected for lignin content/composition analysis. Amongst these lines, three independent tetra-allelic homozygous lines (Msc3h-013, Msc3h-121, and Msc3h-158) with different mutation events in MsC3H were characterized in detail. Homozygous mutation of MsC3H in these three lines significantly reduced the lignin content and altered lignin composition in stems. Moreover, these lines had significantly lower levels of acid detergent fiber and neutral detergent fiber as well as higher levels of total digestible nutrients, relative feed values, and in vitro true dry matter digestibility. Taken together, these results showed that CRISPR/Cas9-mediated editing of MsC3H successfully reduced shoot lignin content, improved digestibility, and nutritional values without sacrificing plant growth and biomass yield. These lines could be used in alfalfa breeding programs to generate elite transgene-free alfalfa cultivars with reduced lignin and improved forage quality.

4.
Commun Biol ; 7(1): 289, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459083

RESUMEN

Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA in Medicago truncatula identified from salt-treated Medicago truncatula is important for salinity tolerance. We name the lncRNA LAL, LncRNA ANTISENSE to M. truncatula LIGHT-HARVESTING CHLOROPHYLL A/B BINDING (MtLHCB) genes. LAL is an antisense to four consecutive MtLHCB genes on chromosome 6. In salt-treated M. truncatula, LAL is suppressed in an early stage but induced later; this pattern is opposite to that of the four MtLHCBs. The lal mutants show enhanced salinity tolerance, while overexpressing LAL disrupts this superior tolerance in the lal background, which indicates its regulatory role in salinity response. The regulatory role of LAL on MtLHCB1.4 is further verified by transient co-expression of LAL and MtLHCB1.4-GFP in tobacco leaves, in which the cleavage of MtLHCB1.4 and production of secondary interfering RNA is identified. This work demonstrates a lncRNA, LAL, functioning as a regulator that fine-tunes salinity tolerance via regulating MtLHCB1s' expression in M. truncatula.


Asunto(s)
Medicago truncatula , ARN Largo no Codificante , Tolerancia a la Sal/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Estrés Fisiológico/genética , Clorofila A/metabolismo
5.
Curr Biol ; 34(4): 825-840.e7, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38301650

RESUMEN

Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.


Asunto(s)
Medicago truncatula , Medicago truncatula/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Hipocótilo/genética , Hipocótilo/metabolismo , Citocininas/genética , Meristema/metabolismo , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
6.
Adv Sci (Weinh) ; 11(12): e2306389, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225717

RESUMEN

Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.


Asunto(s)
Medicago truncatula , Vanadio , Humanos , Vanadio/metabolismo , Mutación , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Transducción de Señal
7.
Trends Plant Sci ; 29(2): 120-122, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37993373

RESUMEN

Viral diseases of plants are exceptionally difficult to control in agriculture production. Recently, Gao et al. discovered that engineered site-selective nanoparticles (NPs), incorporating metal ion-based proteolytic activity and nanoscale chirality, can be used as potent, nontoxic, and environmentally friendly antiviral agents to kill plant viruses.


Asunto(s)
Agricultura , Virus de Plantas , Plantas
8.
New Phytol ; 241(2): 793-810, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37915139

RESUMEN

Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.


Asunto(s)
Medicago truncatula , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Cobre/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Physiol Plant ; 175(5): e14046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882293

RESUMEN

Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementation and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous to Arabidopsis KIX8, which negatively regulates organ size. Moreover, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and seed weight. Quantitative reverse-transcription PCR and in situ hybridization showed that MtKIX8 is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our results suggest that the MIO1-MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tamaño de los Órganos , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
10.
J Integr Plant Biol ; 65(10): 2279-2291, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37526388

RESUMEN

Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class Ⅱ KNOTTED-like homeobox (KNOXII) genes in the model leguminous plant Medicago truncatula. Phenotypic and genetic analyses suggest that MtKNOX4, 5 are able to repress leaflet formation, while MtKNOX3, 9, 10 are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ-mediated CK biosynthesis. Additionally, two boundary genes, FUSED COMPOUND LEAF1 (orthologue of Arabidopsis Class M KNOX) and NO APICAL MERISTEM (orthologue of Arabidopsis CUP-SHAPED COTYLEDON), are necessary for MtKNOX4-mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves in M. truncatula.


Asunto(s)
Arabidopsis , Medicago truncatula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Meristema/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
12.
New Phytol ; 239(5): 1954-1973, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37416943

RESUMEN

Establishment of symbiosis between plants and arbuscular mycorrhizal (AM) fungi depends on fungal chitooligosaccharides (COs) and lipo-chitooligosaccharides (LCOs). The latter are also produced by nitrogen-fixing rhizobia to induce nodules on leguminous roots. However, host enzymes regulating structure and levels of these signals remain largely unknown. Here, we analyzed the expression of a ß-N-acetylhexosaminidase gene of Medicago truncatula (MtHEXO2) and biochemically characterized the enzyme. Mutant analysis was performed to study the role of MtHEXO2 during symbiosis. We found that expression of MtHEXO2 is associated with AM symbiosis and nodulation. MtHEXO2 expression in the rhizodermis was upregulated in response to applied chitotetraose, chitoheptaose, and LCOs. M. truncatula mutants deficient in symbiotic signaling did not show induction of MtHEXO2. Subcellular localization analysis indicated that MtHEXO2 is an extracellular protein. Biochemical analysis showed that recombinant MtHEXO2 does not cleave LCOs but can degrade COs into N-acetylglucosamine (GlcNAc). Hexo2 mutants exhibited reduced colonization by AM fungi; however, nodulation was not affected in hexo2 mutants. In conclusion, we identified an enzyme, which inactivates COs and promotes the AM symbiosis. We hypothesize that GlcNAc produced by MtHEXO2 may function as a secondary symbiotic signal.


Asunto(s)
Medicago truncatula , Micorrizas , Simbiosis/fisiología , Medicago truncatula/microbiología , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo , Micorrizas/fisiología , Quitina/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Plant J ; 116(1): 112-127, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37344994

RESUMEN

Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium-legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium-legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root-to-shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long-distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia-legume symbiosis, possibly by regulating long-distance Pi transport.


Asunto(s)
Medicago truncatula , Rhizobium , Fósforo/metabolismo , Simbiosis/genética , Nódulos de las Raíces de las Plantas/metabolismo , Rhizobium/fisiología , Fosfatos/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Verduras/metabolismo , Fijación del Nitrógeno/genética
14.
Nat Commun ; 14(1): 2807, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198152

RESUMEN

The adjustment of cellular redox homeostasis is essential in when responding to environmental perturbations, and the mechanism by which cells distinguish between normal and oxidized states through sensors is also important. In this study, we found that acyl-protein thioesterase 1 (APT1) is a redox sensor. Under normal physiological conditions, APT1 exists as a monomer through S-glutathionylation at C20, C22 and C37, which inhibits its enzymatic activity. Under oxidative conditions, APT1 senses the oxidative signal and is tetramerized, which makes it functional. Tetrameric APT1 depalmitoylates S-acetylated NAC (NACsa), and NACsa relocates to the nucleus, increases the cellular glutathione/oxidized glutathione (GSH/GSSG) ratio through the upregulation of glyoxalase I expression, and resists oxidative stress. When oxidative stress is alleviated, APT1 is found in monomeric form. Here, we describe a mechanism through which APT1 mediates a fine-tuned and balanced intracellular redox system in plant defence responses to biotic and abiotic stresses and provide insights into the design of stress-resistant crops.


Asunto(s)
Glutatión , Lactoilglutatión Liasa , Medicago truncatula , Núcleo Celular/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Lactoilglutatión Liasa/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Tioléster Hidrolasas
15.
Plant Biotechnol J ; 21(7): 1383-1392, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36964962

RESUMEN

Alfalfa (Medicago sativa L.) is a perennial flowering plant in the legume family that is widely cultivated as a forage crop for its high yield, forage quality and related agricultural and economic benefits. Alfalfa is a photoperiod sensitive long-day (LD) plant that can accomplish its vegetative and reproductive phases in a short period of time. However, rapid flowering can compromise forage biomass yield and quality. Here, we attempted to delay flowering in alfalfa using multiplex CRISPR/Cas9-mediated mutagenesis of FLOWERING LOCUS Ta1 (MsFTa1), a key floral integrator and activator gene. Four guide RNAs (gRNAs) were designed and clustered in a polycistronic tRNA-gRNA system and introduced into alfalfa by Agrobacterium-mediated transformation. Ninety-six putative mutant lines were identified by gene sequencing and characterized for delayed flowering time and related desirable agronomic traits. Phenotype assessment of flowering time under LD conditions identified 22 independent mutant lines with delayed flowering compared to the control. Six independent Msfta1 lines containing mutations in all four copies of MsFTa1 accumulated significantly higher forage biomass yield, with increases of up to 78% in fresh weight and 76% in dry weight compared to controls. Depending on the harvesting schemes, many of these lines also had reduced lignin, acid detergent fibre (ADF) and neutral detergent fibre (NDF) content and significantly higher crude protein (CP) and mineral contents compared to control plants, especially in the stems. These CRISPR/Cas9-edited Msfta1 mutants could be introduced in alfalfa breeding programmes to generate elite transgene-free alfalfa cultivars with improved forage biomass yield and quality.


Asunto(s)
Sistemas CRISPR-Cas , Medicago sativa , Biomasa , Sistemas CRISPR-Cas/genética , Detergentes , Medicago sativa/genética , Mutagénesis , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Plant Physiol ; 191(3): 1751-1770, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36617225

RESUMEN

Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula.


Asunto(s)
Medicago truncatula , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Flores/genética , Flores/metabolismo , Ácidos Grasos/metabolismo , Ceras/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Mutación/genética
18.
Plant Cell ; 35(2): 776-794, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36440970

RESUMEN

Legumes acquire fixed nitrogen (N) from the soil and through endosymbiotic association with diazotrophic bacteria. However, establishing and maintaining N2-fixing nodules are expensive for the host plant, relative to taking up N from the soil. Therefore, plants suppress symbiosis when N is plentiful and enhance symbiosis when N is sparse. Here, we show that the nitrate transporter MtNRT2.1 is required for optimal nodule establishment in Medicago truncatula under low-nitrate conditions and the repression of nodulation under high-nitrate conditions. The NIN-like protein (NLP) MtNLP1 is required for MtNRT2.1 expression and regulation of nitrate uptake/transport under low- and high-nitrate conditions. Under low nitrate, the gene encoding the C-terminally encoded peptide (CEP) MtCEP1 was more highly expressed, and the exogenous application of MtCEP1 systemically promoted MtNRT2.1 expression in a compact root architecture 2 (MtCRA2)-dependent manner. The enhancement of nodulation by MtCEP1 and nitrate uptake were both impaired in the Mtnrt2.1 mutant under low nitrate. Our study demonstrates that nitrate uptake by MtNRT2.1 differentially affects nodulation at low- and high-nitrate conditions through the actions of MtCEP1 and MtNLP1.


Asunto(s)
Medicago truncatula , Nitratos , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Nitratos/farmacología , Nitratos/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/fisiología
19.
Plant Physiol ; 191(1): 729-746, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305683

RESUMEN

Medicago (Medicago truncatula) establishes a symbiosis with the rhizobia Sinorhizobium sp, resulting in the formation of nodules where the bacteria fix atmospheric nitrogen. The loss of immunity repression or early senescence activation compromises symbiont survival and leads to the formation of nonfunctional nodules (fix-). Despite many studies exploring an overlap between immunity and senescence responses outside the nodule context, the relationship between these processes in the nodule remains poorly understood. To investigate this phenomenon, we selected and characterized three Medicago mutants developing fix- nodules and showing senescence responses. Analysis of specific defense (PATHOGENESIS-RELATED PROTEIN) or senescence (CYSTEINE PROTEASE) marker expression demonstrated that senescence and immunity seem to be antagonistic in fix- nodules. The growth of senescence mutants on non-sterile (sand/perlite) substrate instead of sterile in vitro conditions decreased nodule senescence and enhanced defense, indicating that environment can affect the immunity/senescence balance. The application of wounding stress on wild-type (WT) fix+ nodules led to the death of intracellular rhizobia and associated with co-stimulation of defense and senescence markers, indicating that in fix+ nodules the relationship between the two processes switches from opposite to synergistic to control symbiont survival during response to the stress. Our data show that the immune response in stressed WT nodules is linked to the repression of DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK), and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD), key genes involved in symbiotic immunity suppression. This study provides insight to understand the links between senescence and immunity in Medicago nodules.


Asunto(s)
Proteasas de Cisteína , Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolismo , Simbiosis/genética , Proteínas de Plantas/metabolismo , Fijación del Nitrógeno/genética , Proteasas de Cisteína/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Sinorhizobium meliloti/fisiología
20.
Front Plant Sci ; 13: 1034230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466271

RESUMEN

Nod factors secreted by nitrogen-fixing rhizobia are lipo-chitooligosaccharidic signals required for establishment of the nodule symbiosis with legumes. In Medicago truncatula, the Nod factor hydrolase 1 (MtNFH1) was found to cleave Nod factors of Sinorhizobium meliloti. Here, we report that the class V chitinase MtCHIT5b of M. truncatula expressed in Escherichia coli can release lipodisaccharides from Nod factors. Analysis of M. truncatula mutant plants indicated that MtCHIT5b, together with MtNFH1, degrades S. meliloti Nod factors in the rhizosphere. MtCHIT5b expression was induced by treatment of roots with purified Nod factors or inoculation with rhizobia. MtCHIT5b with a fluorescent tag was detected in the infection pocket of root hairs. Nodulation of a MtCHIT5b knockout mutant was not significantly altered whereas overexpression of MtCHIT5b resulted in fewer nodules. Reduced nodulation was observed when MtCHIT5b and MtNFH1 were simultaneously silenced in RNA interference experiments. Overall, this study shows that nodule formation of M. truncatula is regulated by a second Nod factor cleaving hydrolase in addition to MtNFH1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...