Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Commun Med (Lond) ; 4(1): 95, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773224

RESUMEN

BACKGROUND: Preclinical studies have demonstrated that VT1021, a first-in-class therapeutic agent, inhibits tumor growth via stimulation of thrombospondin-1 (TSP-1) and reprograms the tumor microenvironment. We recently reported data from the dose escalation part of a phase I study of VT1021 in solid tumors. Here, we report findings from the dose expansion phase of the same study. METHODS: We analyzed the safety and tolerability, clinical response, and biomarker profile of VT1021 in the expansion portion of the phase I study (NCT03364400). Safety/tolerability is determined by adverse events related to the treatment. Clinical response is determined by RECIST v1.1 and iRECIST. Biomarkers are measured by multiplexed ion beam imaging and enzyme-linked immunoassay (ELISA). RESULTS: First, we report the safety and tolerability data as the primary outcome of this study. Adverse events (AE) suspected to be related to the study treatment (RTEAEs) are mostly grade 1-2. There are no grade 4 or 5 adverse events. VT1021 is safe and well tolerated in patients with solid tumors in this study. We report clinical responses as a secondary efficacy outcome. VT1021 demonstrates promising single-agent clinical activity in recurrent GBM (rGBM) in this study. Among 22 patients with rGBM, the overall disease control rate (DCR) is 45% (95% confidence interval, 0.24-0.67). Finally, we report the exploratory outcomes of this study. We show the clinical confirmation of TSP-1 induction and TME remodeling by VT1021. Our biomarker analysis identifies several plasmatic cytokines as potential biomarkers for future clinical studies. CONCLUSIONS: VT1021 is safe and well-tolerated in patients with solid tumors in a phase I expansion study. VT1021 has advanced to a phase II/III clinical study in glioblastoma (NCT03970447).


The network of cells that surround a tumor, the tumor microenvironment, can help cancers to grow. Therapies targeting the tumor microenvironment may help to stop tumor growth. One such therapy is VT1021. In animal models, VT1021 treatment stops tumor cells from growing by changing the tumor microenvironment. Here, we have tested VT1021 in a clinical trial and found that VT1021 treatment is safe and well tolerated in patients with cancer. We also see signs of efficacy in some patients and observe evidence that VT1021 modifies the tumor microenvironment, which may help to block tumor growth. Finally, we identified several markers from the blood that may help to predict which patients will best benefit from VT1021 treatment. With further testing in clinical trials, VT1021 may be a useful therapy for patients with cancer.

2.
Nat Rev Dis Primers ; 10(1): 33, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724526

RESUMEN

Gliomas are primary brain tumours that are thought to develop from neural stem or progenitor cells that carry tumour-initiating genetic alterations. Based on microscopic appearance and molecular characteristics, they are classified according to the WHO classification of central nervous system (CNS) tumours and graded into CNS WHO grades 1-4 from a low to high grade of malignancy. Diffusely infiltrating gliomas in adults comprise three tumour types with distinct natural course of disease, response to treatment and outcome: isocitrate dehydrogenase (IDH)-mutant and 1p/19q-codeleted oligodendrogliomas with the best prognosis; IDH-mutant astrocytomas with intermediate outcome; and IDH-wild-type glioblastomas with poor prognosis. Pilocytic astrocytoma is the most common glioma in children and is characterized by circumscribed growth, frequent BRAF alterations and favourable prognosis. Diffuse gliomas in children are divided into clinically indolent low-grade tumours and high-grade tumours with aggressive behaviour, with histone 3 K27-altered diffuse midline glioma being the leading cause of glioma-related death in children. Ependymal tumours are subdivided into biologically and prognostically distinct types on the basis of histology, molecular biomarkers and location. Although surgery, radiotherapy and alkylating agent chemotherapy are the mainstay of glioma treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways have improved outcome in subsets of patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/fisiopatología , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatología , Pronóstico , Niño , Isocitrato Deshidrogenasa/genética , Mutación
3.
Neuro Oncol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695575

RESUMEN

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

4.
Neuro Oncol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702966

RESUMEN

Meningiomas are the most common intracranial neoplasms in adults. While most meningiomas are cured by resection, further treatment by radiotherapy may be needed, particularly in WHO grade 2 and 3 tumors which have an increased risk of recurrence, even after conventional therapies. Still, there is an urgent need for novel therapeutic strategies after exhaustion of local treatment approaches. Radionuclide therapies combine the specificity of tumor-specific antibodies or ligands with the cytotoxic activity of radioactive emitters. Alongside, integrated molecular imaging allows for a non-invasive assessment of predictive biomarkers as treatment targets. Whereas the concept of "theranostics" has initially evolved in extracranial tumors such as thyroid diseases, neuroendocrine tumors, and prostate cancer, data from retrospective case series and early phase trials underscore the potential of this strategy in meningioma. This review aims to explore the available evidence of radionuclide treatments and ongoing clinical trial initiatives in meningioma. Moreover, we discuss optimal clinical trial design and future perspectives in the field, including compound- and host-specific determinants of the efficacy of "theranostic" treatment approaches.

5.
Neuro Oncol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38770568

RESUMEN

DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.

6.
Neuro Oncol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598668

RESUMEN

BACKGROUND: The utility of liquid biopsies is well documented in several extracranial and intracranial (brain/leptomeningeal metastases, gliomas) tumors. METHODS: The RANO (Response Assessment in Neuro-Oncology) group has set up a multidisciplinary Task Force to critically review the role of blood and CSF-liquid biopsy in central nervous system lymphomas, with a main focus on primary central nervous system lymphomas (PCNSL). RESULTS: Several clinical applications are suggested: diagnosis of PCNSL in critical settings (elderly or frail patients, deep locations, steroids responsiveness), definition of minimal residual disease, early indication of tumor response or relapse following treatments and prediction of outcome. CONCLUSIONS: Thus far, no clinically validated circulating biomarkers for managing both primary and secondary CNS lymphomas exist. There is need of standardization of biofluid collection, choice of analytes and type of technique to perform the molecular analysis. The various assays should be evaluated through well organized central testing within clinical trials.

7.
medRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38645003

RESUMEN

Background: Glutamatergic neuron-glioma synaptogenesis and peritumoral hyperexcitability promote glioma growth in a positive feedback loop. The objective of this study was to evaluate the feasibility and estimated effect sizes of the AMPA-R antagonist, perampanel, on intraoperative electrophysiologic hyperexcitability and clinical outcomes. Methods: An open-label trial was performed comparing perampanel to standard of care (SOC) in patients undergoing resection of newly-diagnosed radiologic high-grade glioma. Perampanel was administered as a pre-operative loading dose followed by maintenance therapy until progressive disease or up to 12-months. SOC treatment involved levetiracetam for 7-days or as clinically indicated. The primary outcome of hyperexcitability was defined by intra-operative electrocorticography high frequency oscillation (HFO) rates. Seizure-freedom and overall survival (OS) were estimated by the Kaplan-Meier method. Tissue concentrations of perampanel, levetiracetam, and metabolites were measured by mass spectrometry. Results: HFO rates were similar between perampanel-treated and SOC cohorts. The trial was terminated early after interim analysis for futility, and outcomes assessed in 11 patients (7 perampanel-treated, 4 SOC). Over a median 281 days of post-enrollment follow-up, 27% of patients had seizures, including 14% treated with perampanel and 50% treated with SOC. OS in perampanel-treated patients was similar to a glioblastoma reference cohort (p=0.81). Glutamate concentrations in surface biopsies were positively correlated with HFO rates in adjacent electrode contacts and were not significantly associated with treatment assignment or drug concentrations. Conclusions: A peri-operative loading regimen of perampanel was safe and well-tolerated, with similar peritumoral hyperexcitability as in levetiracetam-treated patients. Maintenance anti-glutamatergic therapy was not observed to impact survival outcomes.

8.
Cancer Cell ; 42(5): 904-914.e9, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38579724

RESUMEN

A subset of patients with IDH-mutant glioma respond to inhibitors of mutant IDH (IDHi), yet the molecular underpinnings of such responses are not understood. Here, we profiled by single-cell or single-nucleus RNA-sequencing three IDH-mutant oligodendrogliomas from patients who derived clinical benefit from IDHi. Importantly, the tissues were sampled on-drug, four weeks from treatment initiation. We further integrate our findings with analysis of single-cell and bulk transcriptomes from independent cohorts and experimental models. We find that IDHi treatment induces a robust differentiation toward the astrocytic lineage, accompanied by a depletion of stem-like cells and a reduction of cell proliferation. Furthermore, mutations in NOTCH1 are associated with decreased astrocytic differentiation and may limit the response to IDHi. Our study highlights the differentiating potential of IDHi on the cellular hierarchies that drive oligodendrogliomas and suggests a genetic modifier that may improve patient stratification.


Asunto(s)
Neoplasias Encefálicas , Diferenciación Celular , Isocitrato Deshidrogenasa , Mutación , Oligodendroglioma , Oligodendroglioma/genética , Oligodendroglioma/patología , Oligodendroglioma/tratamiento farmacológico , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Humanos , Diferenciación Celular/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Linaje de la Célula/efectos de los fármacos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proliferación Celular/efectos de los fármacos , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Ratones , Análisis de la Célula Individual/métodos
9.
Neuro Oncol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466087

RESUMEN

Brain tumor diagnostics have significantly evolved with the use of PET and advanced MRI techniques. In addition to anatomical MRI, these modalities may provide valuable information for several clinical applications such as differential diagnosis, delineation of tumor extent, prognostication, differentiation between tumor relapse and treatment-related changes, and the evaluation of response to anticancer therapy. In particular, joint recommendations of the RANO group, the EANO, and major European and American Nuclear Medicine societies highlighted that the additional clinical value of radiolabeled amino acids compared to anatomical MRI alone is outstanding and that its widespread clinical use should be supported. For advanced MRI and its steadily increasing use in clinical practice, the Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition provided more recently an updated acquisition protocol for the widely used dynamic susceptibility contrast perfusion MRI. Besides amino acid PET and perfusion MRI, other PET tracers and advanced MRI techniques (e.g., MR spectroscopy) are of considerable clinical interest and are increasingly integrated into everyday clinical practice. Nevertheless, these modalities have shortcomings which should be considered in clinical routine. This comprehensive review provides an overview of potential challenges, limitations and pitfalls associated with PET imaging and advanced MRI techniques in patients with gliomas or brain metastases. Despite these issues, PET imaging and advanced MRI techniques continue to play an indispensable role in brain tumor management. Acknowledging and mitigating these challenges through interdisciplinary collaboration, standardized protocols, and continuous innovation will further enhance the utility of these modalities in guiding optimal patient care.

10.
Neuro Oncol ; 26(Supplement_2): S173-S181, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445964

RESUMEN

BACKGROUND: H3 K27M-mutant diffuse glioma primarily affects children and young adults, is associated with a poor prognosis, and no effective systemic therapy is currently available. ONC201 (dordaviprone) has previously demonstrated efficacy in patients with recurrent disease. This phase 3 trial evaluates ONC201 in patients with newly diagnosed H3 K27M-mutant glioma. METHODS: ACTION (NCT05580562) is a randomized, double-blind, placebo-controlled, parallel-group, international phase 3 study of ONC201 in newly diagnosed H3 K27M-mutant diffuse glioma. Patients who have completed standard frontline radiotherapy are randomized 1:1:1 to receive placebo, once-weekly dordaviprone, or twice-weekly dordaviprone on 2 consecutive days. Primary efficacy endpoints are overall survival (OS) and progression-free survival (PFS); PFS is assessed by response assessment in neuro-oncology high-grade glioma criteria (RANO-HGG) by blind independent central review. Secondary objectives include safety, additional efficacy endpoints, clinical benefit, and quality of life. Eligible patients have histologically confirmed H3 K27M-mutant diffuse glioma, a Karnofsky/Lansky performance status ≥70, and completed first-line radiotherapy. Eligibility is not restricted by age; however, patients must be ≥10 kg at time of randomization. Patients with a primary spinal tumor, diffuse intrinsic pontine glioma, leptomeningeal disease, or cerebrospinal fluid dissemination are not eligible. ACTION is currently enrolling in multiple international sites.


Asunto(s)
Neoplasias Encefálicas , Glioma , Mutación , Humanos , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/patología , Método Doble Ciego , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Adulto , Masculino , Femenino , Histonas/genética , Adolescente , Niño , Adulto Joven , Pronóstico , Tasa de Supervivencia , Calidad de Vida , Persona de Mediana Edad , Estudios de Seguimiento , Anciano
11.
Neurooncol Adv ; 6(1): vdad169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312230

RESUMEN

Background: Clinical trials are important to close the gap between therapeutic unmet needs and scientific advances in neuro-oncology. This study analyzes the landscape of neuro-oncology trials to identify completion rates and guide strategies for the path forward. Methods: US-registered adult neuro-oncology clinical trials were extracted from www.clinicaltrials.gov (1966-2019), including funding source, trial type, scope, phase, and subjects' demographics. Completed trials defined as those that had completed participants' examinations or intervention administration for the purpose of the final collection of data for the primary outcome were dichotomized against those that failed to reach completion. Univariate and multivariate analyses were used to detect differences across factors comparing the last 2 decades (2000-2009, 2010-2019). Results: Our search yielded 4522 trials, of which 1257 are eligible for this study. In 25 US states, neuro-oncology trial availability is <0.85/100,000 population. Comparing the past 2 decades, trial completion rate decreased from 88% to 64% (P < .001) and National Institutes of Health funding decreased from 47% to 24% (P < .001). Inclusion of subjects >65-year-old and women increased, while inclusion of Hispanic subjects decreased (P < .001). The top 2 reasons for lack of completion included accrual and operational difficulties. A larger proportion of women, non-Hispanic subjects, and older adults were enrolled in completed trials than in those that failed completion. Conclusions: Our study is the first report on the neuro-oncology clinical trial landscape in the United States and supports the development of strategies to further improve access to these trials. Additionally, attention is needed to identify and modify other factors contributing to lack of completion.

12.
J Clin Oncol ; 42(13): 1542-1552, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335473

RESUMEN

PURPOSE: Histone 3 (H3) K27M-mutant diffuse midline glioma (DMG) has a dismal prognosis with no established effective therapy beyond radiation. This integrated analysis evaluated single-agent ONC201 (dordaviprone), a first-in-class imipridone, in recurrent H3 K27M-mutant DMG. METHODS: Fifty patients (pediatric, n = 4; adult, n = 46) with recurrent H3 K27M-mutant DMG who received oral ONC201 monotherapy in four clinical trials or one expanded access protocol were included. Eligible patients had measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma (HGG) criteria and performance score (PS) ≥60 and were ≥90 days from radiation; pontine and spinal tumors were ineligible. The primary end point was overall response rate (ORR) by RANO-HGG criteria. Secondary end points included duration of response (DOR), time to response (TTR), corticosteroid response, PS response, and ORR by RANO low-grade glioma (LGG) criteria. Radiographic end points were assessed by dual-reader, blinded independent central review. RESULTS: The ORR (RANO-HGG) was 20.0% (95% CI, 10.0 to 33.7). The median TTR was 8.3 months (range, 1.9-15.9); the median DOR was 11.2 months (95% CI, 3.8 to not reached). The ORR by combined RANO-HGG/LGG criteria was 30.0% (95% CI, 17.9 to 44.6). A ≥50% corticosteroid dose reduction occurred in 7 of 15 evaluable patients (46.7% [95% CI, 21.3 to 73.4]); PS improvement occurred in 6 of 34 evaluable patients (20.6% [95% CI, 8.7 to 37.9]). Grade 3 treatment-related treatment-emergent adverse events (TR-TEAEs) occurred in 20.0% of patients; the most common was fatigue (n = 5; 10%); no grade 4 TR-TEAEs, deaths, or discontinuations occurred. CONCLUSION: ONC201 monotherapy was well tolerated and exhibited durable and clinically meaningful efficacy in recurrent H3 K27M-mutant DMG.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Mutación , Humanos , Adulto , Femenino , Masculino , Adolescente , Persona de Mediana Edad , Adulto Joven , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Niño , Histonas/genética , Anciano , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Preescolar , Pirimidinas/uso terapéutico , Pirimidinas/efectos adversos , Piridonas/uso terapéutico
13.
Neuro Oncol ; 26(Supplement_2): S165-S172, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38386699

RESUMEN

BACKGROUND: Diffuse midline glioma, H3 K27-altered (H3 K27M-altered DMG) are invariably lethal, disproportionately affecting the young and without effective treatment besides radiotherapy. The 2016 World Health Organization (WHO) Central Nervous System (CNS) Tumors Classification defined H3 K27M mutations as pathognomonic but restricted diagnosis to diffuse gliomas involving midline structures by 2018. Dordaviprone (ONC201) is an oral investigational small molecule, DRD2 antagonist, and ClpP agonist associated with durable responses in recurrent H3 K27M-mutant DMG. Activity of ONC201 in non-midline H3 K27M-mutant diffuse gliomas has not been reported. METHODS: Patients with recurrent non-midline H3 K27M-mutant diffuse gliomas treated with ONC201 were enrolled in 5 trials. Eligibility included measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma, Karnofsky/Lansky performance score ≥60, and ≥90 days from radiation. The primary endpoint was overall response rate (ORR). RESULTS: Five patients with cerebral gliomas (3 frontal, 1 temporal, and 1 parietal) met inclusion. One complete and one partial response were reported by investigators. Blinded independent central review confirmed ORR by RANO criteria for 2, however, 1 deemed nonmeasurable and another stable. A responding patient also noted improved mobility and alertness. CONCLUSIONS: H3 K27M-mutant diffuse gliomas occasionally occur in non-midline cerebrum. ONC201 exhibits activity in H3 K27M-mutant gliomas irrespective of CNS location.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imidazoles , Mutación , Recurrencia Local de Neoplasia , Receptores de Dopamina D2 , Humanos , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/patología , Masculino , Femenino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Receptores de Dopamina D2/genética , Adulto , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/genética , Antagonistas de los Receptores de Dopamina D2/uso terapéutico , Antagonistas de los Receptores de Dopamina D2/farmacología , Pirimidinas/uso terapéutico , Pronóstico , Adulto Joven , Estudios de Seguimiento , Estudios de Cohortes , Agonistas de Dopamina/uso terapéutico , Piridinas/uso terapéutico , Piridinas/farmacología
14.
Lancet Oncol ; 25(1): e29-e41, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38181810

RESUMEN

Response Assessment in Neuro-Oncology (RANO) response criteria have been established and were updated in 2023 for MRI-based response evaluation of diffuse gliomas in clinical trials. In addition, PET-based imaging with amino acid tracers is increasingly considered for disease monitoring in both clinical practice and clinical trials. So far, a standardised framework defining timepoints for baseline and follow-up investigations and response evaluation criteria for PET imaging of diffuse gliomas has not been established. Therefore, in this Policy Review, we propose a set of criteria for response assessment based on amino acid PET imaging in clinical trials enrolling participants with diffuse gliomas as defined in the 2021 WHO classification of tumours of the central nervous system. These proposed PET RANO criteria provide a conceptual framework that facilitates the structured implementation of PET imaging into clinical research and, ultimately, clinical routine. To this end, the PET RANO 1.0 criteria are intended to encourage specific investigations of amino acid PET imaging of gliomas.


Asunto(s)
Glioma , Neurología , Humanos , Glioma/diagnóstico por imagen , Glioma/terapia , Aminoácidos , Medicina Interna , Tomografía de Emisión de Positrones , Factores de Transcripción
15.
Curr Neurol Neurosci Rep ; 24(2): 17-25, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38170429

RESUMEN

PURPOSE OF REVIEW: The response assessment in Neuro-Oncology (RANO) criteria and its versions were developed by expert opinion consensus to standardize response evaluation in glioma clinical trials. New patient-based data informed the development of updated response assessment criteria, RANO 2.0. RECENT FINDINGS: In a recent study of patients with glioblastoma, the post-radiation brain MRI was a superior baseline MRI compared to the pretreatment MRI, and confirmation scans were only beneficial within the first 12 weeks of completion of radiation in newly diagnosed disease. Nonenhancing disease evaluation did not improve the correlation between progression-free survival and overall survival in newly diagnosed and recurrent settings. RANO 2.0 recommends a single common response criteria for high- and low-grade gliomas, regardless of the treatment modality being evaluated. It also provides guidance on the evaluation of nonenhancing tumors and tumors with both enhancing and nonenhancing components.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/terapia , Imagen por Resonancia Magnética , Neuroimagen
16.
Clin Cancer Res ; 30(7): 1327-1337, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252427

RESUMEN

PURPOSE: Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN: We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS: Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS: Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genómica , Convulsiones/genética , Mutación , ADN Helicasas/genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética
18.
Neuro Oncol ; 26(4): 596-608, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38071654

RESUMEN

Despite major strides in cancer research and therapy, these advances have not been equitable across race and ethnicity. Historically marginalized groups (HMG) are more likely to have inadequate preventive screening, increased delays in diagnosis, and poor representation in clinical trials. Notably, Black, Hispanic, and Indigenous people represent 30% of the population but only 9% of oncology clinical trial participants. As a result, HMGs lack equitable access to novel therapies, contradicting the principle of distributive justice, as enshrined in the Belmont report, which demands the equitable selection of subjects in research involving human subjects. The lack of clinical trial diversity also leads to low generalizability and potentially harmful medical practices. Specifically, patients with brain cancer face unique barriers to clinical trial enrollment and completion due to disease-specific neurologic and treatment-induced conditions. Collectively, the intersection of these disease-specific conditions with social determinants of health fosters a lack of diversity in clinical trials. To ameliorate this disparity in neuro-oncology clinical trial participation, we present interventions focused on improving engagement of HMGs. Proposals range from inclusive trial design, decreasing barriers to care, expanding trial eligibility, access to tumor profiling for personalized medical trials, setting reasonable metrics and goals for accrual, working with patient community stakeholders, diversifying the neuro-oncology workforce, and development of tools to overcome biases with options to incentivize equity. The diversification of participation amongst neuro-oncology clinical trials is imperative. Equitable access and inclusion of HMG patients with brain tumors will not only enhance research discoveries but will also improve patient care.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/terapia , Oncología Médica , Etnicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...