Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38441500

RESUMEN

In this Perspective, Journal of Cell Science invited researchers working on cell and tissue polarity to share their thoughts on unique, emerging or open questions relating to their field. The goal of this article is to feature 'voices' from scientists around the world and at various career stages, to bring attention to innovative and thought-provoking topics of interest to the cell biology community. These voices discuss intriguing questions that consider polarity across scales, evolution, development and disease. What can yeast and protists tell us about the evolution of cell and tissue polarity in animals? How are cell fate and development influenced by emerging dynamics in cell polarity? What can we learn from atypical and extreme polarity systems? How can we arrive at a more unified biophysical understanding of polarity? Taken together, these pieces demonstrate the broad relevance of the fascinating phenomenon of cell polarization to diverse fundamental biological questions.


Asunto(s)
Polaridad Celular , Investigadores , Animales , Humanos , Biofisica , Diferenciación Celular , Saccharomyces cerevisiae
3.
Proc Natl Acad Sci U S A ; 120(33): e2302478120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549262

RESUMEN

Lipid homeostasis is essential for normal cellular functions and dysregulation of lipid metabolism is highly correlated with human diseases including neurodegenerative diseases. In the ubiquitin-dependent autophagic degradation pathway, Troyer syndrome-related protein Spartin activates and recruits HECT-type E3 Itch to lipid droplets (LDs) to regulate their turnover. In this study, we find that Spartin promotes the formation of Itch condensates independent of LDs. Spartin activates Itch through its multiple PPAY-motif platform generated by self-oligomerization, which targets the WW12 domains of Itch and releases the autoinhibition of the ligase. Spartin-induced activation and subsequent autoubiquitination of Itch lead to liquid-liquid phase separation (LLPS) of the poly-, but not oligo-, ubiquitinated Itch together with Spartin and E2 both in vitro and in living cells. LLPS-mediated condensation of the reaction components further accelerates the generation of polyubiquitin chains, thus forming a positive feedback loop. Such Itch-Spartin condensates actively promote the autophagy-dependent turnover of LDs. Moreover, we show that the catalytic HECT domain of Itch is sufficient to interact and phase separate with poly-, but not oligo-ubiquitin chains. HECT domains from other HECT E3 ligases also exhibit LLPS-mediated the promotion of ligase activity. Therefore, LLPS and ubiquitination are mutually interdependent and LLPS promotes the ligase activity of the HECT family E3 ligases.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Humanos , Retroalimentación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo
4.
Mol Metab ; 75: 101766, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37406987

RESUMEN

Sufficient evidence has linked many different types of cancers and T2D through shared risk factors; however, the underlying mechanisms are not fully understood. α-Hydroxybutyrate (α-HB), a byproduct metabolite increased in diabetes and cancer, including colorectal cancer (CRC), triggers lactate dehydrogenase A (LDHA) nuclear translocation. Nuclear LDHA markedly extends NF-κB nuclear retention by interacting with phosphorylated p65, leading to an increase in TNF-α production, impaired insulin secretion and the exacerbation of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC and high-fat diet (HFD)-induced type 2 diabetes. Furthermore, metformin interrupted this process by inhibiting the transcription of FOXM1 and c-MYC, the resultant downregulation of LDHA expression and α-HB-induced LDHA nuclear translocation. Thus, the results reveal the elevated α-HB level could be a novel shared risk factor of linking CRC, diabetes and the use of metformin treatment, as well as highlight the importance of preventing NF-κB activation for protecting against cancer and diabetes.


Asunto(s)
Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Humanos , FN-kappa B/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Neoplasias Colorrectales/metabolismo , Transducción de Señal
5.
Nat Metab ; 5(7): 1159-1173, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37337119

RESUMEN

Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.


Asunto(s)
Neoplasias , Humanos , Proteínas , Proliferación Celular , Cetoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Transaminasas/metabolismo
6.
Cell Rep ; 42(7): 112677, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37352102

RESUMEN

Polarity proteins regulate the proliferation and differentiation of neural progenitors to generate neurons during brain development through multiple signaling pathways. However, how cell polarity couples the signaling pathways remains unclear. Here, we show that coiled-coil domain-containing protein 85c (Ccdc85c) interacts with the polarity protein Par3 to regulate the proliferation of radial glial cells (RGCs) via phase separation coupled to percolation (PSCP). We find that the interaction with Ccdc85c relieves the intramolecular auto-inhibition of Par3, which leads to PSCP of Par3. Downregulation of Ccdc85c causes RGC differentiation. Importantly, the open conformation of Par3 facilitates the recruitment of the Notch regulator Numb to the Par3 condensates, which might prevent the attenuation of Notch activity to maintain RGC proliferation. Furthermore, ectopic activation of Notch signaling rescues RGC proliferation defects caused by the downregulation of Ccdc85c. These results suggest that Ccdc85c-mediated PSCP of Par3 regulates Notch signaling to control RGC proliferation during brain development.


Asunto(s)
Polaridad Celular , Transducción de Señal , Polaridad Celular/fisiología , Transducción de Señal/fisiología , Neuronas/metabolismo , Proliferación Celular , Receptores Notch/metabolismo
7.
Sci China Life Sci ; 66(10): 2342-2353, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37160652

RESUMEN

Sperm contributes essential paternal factors, including the paternal genome, centrosome, and oocyte-activation signals, to sexual reproduction. However, it remains unresolved how sperm contributes its RNA molecules to regulate early embryonic development. Here, we show that the Caenorhabditis elegans paternal protein SPE-11 assembles into granules during meiotic divisions of spermatogenesis and later matures into a perinuclear structure where sperm RNAs localize. We reconstitute an SPE-11 liquid-phase scaffold in vitro and find that SPE-11 condensates incorporate the nematode RNA, which, in turn, promotes SPE-11 phase separation. Loss of SPE-11 does not affect sperm motility or fertilization but causes pleiotropic development defects in early embryos, and spe-11 mutant males reduce mRNA levels of genes crucial for an oocyte-to-embryo transition or embryonic development. These results reveal that SPE-11 undergoes phase separation and associates with sperm RNAs that are delivered to oocytes during fertilization, providing insights into how a paternal protein regulates early embryonic development.


Asunto(s)
ARN , Semen , Animales , Masculino , ARN/genética , ARN/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo , Espermatogénesis/genética , Caenorhabditis elegans/genética , Oocitos , Fertilización
8.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1042-1051, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249333

RESUMEN

As the foundation for the development of multicellular organisms and the self-renewal of single cells, cell division is a highly organized event which segregates cellular components into two daughter cells equally or unequally, thus producing daughters with identical or distinct fates. Liquid-liquid phase separation (LLPS), an emerging biophysical concept, provides a new perspective for us to understand the mechanisms of a wide range of cellular events, including the organization of membrane-less organelles. Recent studies have shown that several key organelles in the cell division process are assembled into membrane-free structures via LLPS of specific proteins. Here, we summarize the regulatory functions of protein phase separation in centrosome maturation, spindle assembly and polarity establishment during cell division.


Asunto(s)
Centrosoma , Proteínas , Proteínas/metabolismo , Centrosoma/metabolismo , Orgánulos/química , Orgánulos/metabolismo , División Celular
9.
Cell Mol Neurobiol ; 43(6): 2975-2987, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37081231

RESUMEN

Gliomas are aggressive brain tumors characterized by uncontrolled cell proliferation. FAM64A, a cell cycle-related gene, has been found to promote cell proliferation in various tumors, including gliomas. However, the regulatory mechanism and clinical significance of FAM64A in gliomas remain unclear. In this study, we investigated FAM64A expression in gliomas with different grades and constructed FAM64A silenced cell lines to study its functions. Our results demonstrated that FAM64A was highly expressed in glioblastoma (P < 0.001) and associated with a poor prognosis (P < 0.001). Expression profiles at the single-cell resolution indicated FAM64A could play a role in a cell-cycle-dependent way to promote glioma cell proliferation. We further observed that FAM64A silencing in glioma cells resulted in disrupted proliferation and migration ability, and increased cell accumulation in the G2/M phase (P = 0.034). Additionally, TGF-ß signaling upregulates FAM64A expression, and SMAD4 and FAM64A co-localize in high-grade glioma tissues. We found FAM64A knockdown inhibited TGF-ß-induced epithelial-mesenchymal transition in glioma. Our findings suggest that FAM64A could serve as a diagnostic and therapeutic target in gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patología , Neoplasias Encefálicas/patología , Ciclo Celular/genética , Proliferación Celular/genética , División Celular , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
11.
Natl Sci Rev ; 9(5): nwab212, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35663242

RESUMEN

BCAT2-mediated branched-chain amino acid (BCAA) catabolism is critical for pancreatic ductal adenocarcinoma (PDAC) development, especially at an early stage. However, whether a high-BCAA diet promotes PDAC development in vivo, and the underlying mechanism of BCAT2 upregulation, remain undefined. Here, we find that a high-BCAA diet promotes pancreatic intraepithelial neoplasia (PanIN) progression in LSL-KrasG12D/+ ; Pdx1-Cre (KC) mice. Moreover, we screened with an available deubiquitylase library which contains 31 members of USP family and identified that USP1 deubiquitylates BCAT2 at the K229 site. Furthermore, BCAA increases USP1 protein at the translational level via the GCN2-eIF2α pathway both in vitro and in vivo. More importantly, USP1 inhibition recedes cell proliferation and clone formation in PDAC cells and attenuates pancreas tumor growth in an orthotopic transplanted mice model. Consistently, a positive correlation between USP1 and BCAT2 is found in KC; LSL-KrasG12D/+ ; p53flox/+ ; Pdx1-Cre mice and clinical samples. Thus, a therapeutic targeting USP1-BCAT2-BCAA metabolic axis could be considered as a rational strategy for treatment of PDAC and precisive dietary intervention of BCAA has potentially translational significance.

12.
Sci China Life Sci ; 65(10): 2017-2030, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35366151

RESUMEN

Epithelial ovarian cancer (EOC) exhibits strong dependency on the tricarboxylic acid (TCA) cycle and oxidative phosphorylation to fuel anabolic process. Here, we show that malate dehydrogenase 2 (MDH2), a key enzyme of the TCA cycle, is palmitoylated at cysteine 138 (C138) residue, resulting in increased activity of MDH2. We next identify that ZDHHC18 acts as a palmitoyltransferase of MDH2. Glutamine deprivation enhances MDH2 palmitoylation by increasing the binding between ZDHHC18 and MDH2. MDH2 silencing represses mitochondrial respiration as well as ovarian cancer cell proliferation both in vitro and in vivo. Intriguingly, re-expression of wild-type MDH2, but not its palmitoylation-deficient C138S mutant, sustains mitochondrial respiration and restores the growth as well as clonogenic capability of ovarian cancer cells. Notably, MDH2 palmitoylation level is elevated in clinical cancer samples from patients with high-grade serous ovarian cancer. These observations suggest that MDH2 palmitoylation catalyzed by ZDHHC18 sustains mitochondrial respiration and promotes the malignancy of ovarian cancer, yielding possibilities of targeting ZDHHC18-mediated MDH2 palmitoylation in the treatment of EOC.


Asunto(s)
Malato Deshidrogenasa , Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Cisteína , Femenino , Glutamina , Humanos , Lipoilación , Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Respiración , Ácidos Tricarboxílicos
13.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638607

RESUMEN

Asymmetric cell division (ACD) of neural stem cells and progenitors not only renews the stem cell population but also ensures the normal development of the nervous system, producing various types of neurons with different shapes and functions in the brain. One major mechanism to achieve ACD is the asymmetric localization and uneven segregation of intracellular proteins and organelles into sibling cells. Recent studies have demonstrated that liquid-liquid phase separation (LLPS) provides a potential mechanism for the formation of membrane-less biomolecular condensates that are asymmetrically distributed on limited membrane regions. Moreover, mechanical forces have emerged as pivotal regulators of asymmetric neural stem cell division by generating sibling cell size asymmetry. In this review, we will summarize recent discoveries of ACD mechanisms driven by LLPS and mechanical forces.


Asunto(s)
División Celular Asimétrica/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Animales , Fenómenos Biomecánicos , División Celular/fisiología , Polaridad Celular/fisiología , Tamaño de la Célula , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Modelos Neurológicos , Miosinas/fisiología , Neurogénesis/fisiología , Orgánulos/fisiología
14.
Biochemistry ; 60(36): 2677-2684, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34379397

RESUMEN

Cells are biochemically and morphologically polarized, which allows them to produce different cell shapes for various functions. Remarkably, some polarity protein complexes are asymmetrically recruited and concentrated on limited membrane regions, which is essential for the establishment and maintenance of diverse cell polarity. Though the components and mutual interactions within these protein complexes have been extensively investigated, how these proteins autonomously concentrate at local membranes and whether they have the same organization mechanism in the condensed assembly as that in aqueous solution remain elusive. A number of recent studies suggest that these highly concentrated polarity protein assemblies are membraneless biomolecular condensates which form through liquid-liquid phase separation (LLPS) of specific proteins. In this perspective, we summarize the LLPS-driven condensed protein assemblies found in asymmetric cell division, epithelial cell polarity, and neuronal synapse formation and function. These findings suggest that LLPS may be a general strategy for cells to achieve local condensation of specific proteins, thus establishing cell polarity.


Asunto(s)
Neurogénesis/fisiología , Neuronas/fisiología , Orgánulos/metabolismo , Proteínas/metabolismo , División Celular Asimétrica , Polaridad Celular , Humanos , Neuronas/citología , Transición de Fase
15.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723042

RESUMEN

Ykt6 is a soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) critically involved in diverse vesicular fusion pathways. While most SNAREs rely on transmembrane domains for their activity, Ykt6 dynamically cycles between the cytosol and membrane-bound compartments where it is active. The mechanism that regulates these transitions and allows Ykt6 to achieve specificity toward vesicular pathways is unknown. Using a Parkinson's disease (PD) model, we found that Ykt6 is phosphorylated at an evolutionarily conserved site which is regulated by Ca2+ signaling. Through a multidisciplinary approach, we show that phosphorylation triggers a conformational change that allows Ykt6 to switch from a closed cytosolic to an open membrane-bound form. In the phosphorylated open form, the spectrum of protein interactions changes, leading to defects in both the secretory and autophagy pathways, enhancing toxicity in PD models. Our studies reveal a mechanism by which Ykt6 conformation and activity are regulated with potential implications for PD.


Asunto(s)
Secuencia Conservada , Modelos Moleculares , Conformación Proteica , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Aminoácidos , Autofagia , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Evolución Molecular , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas R-SNARE/genética , Relación Estructura-Actividad
16.
BMC Cancer ; 21(1): 83, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472598

RESUMEN

BACKGROUND: Non-invasive diagnosis of IDH1 mutation for gliomas has great clinical significance, and PET has natural advantage to detect metabolism, as IDH mutated gliomas share lower glucose consumption. METHODS: Clinical data of patients with gliomas and 18F-FDG PET were retrospectively reviewed. Receiver operating characteristic curve (ROC) analysis was conducted, and standard uptake value (SUV) was estimated in combination with grades or IDH1 mutation. The glucose consumption was investigated with U251 cells expressing wild-type or mutated IDH1 by glucose assay. Quantification of glucose was determined by HPLC in clinical tissues. Meanwhile, bioinformatics and western blot were applied to analyze the expression level of metabolic enzymes (e.g. HK1, PKM2, PC) in gliomas. RESULTS: Seventy-one glioma cases were enrolled, including 30 carrying IDH1 mutation. The sensitivity and specificity dependent on SUVmax (3.85) predicting IDH1 mutation reached 73.2 and 86.7%, respectively. The sensitivity and specificity of differentiating grades by SUVmax (3.1) were 92.3 and 64.4%, respectively. Glucose consumption of U251 IDH1 mutant cells (0.209 ± 0.0472 mg/ml) was obviously lower than IDH1wild-type cells (0.978 ± 0.0773 mg/ml, P = 0.0001) and astrocyte controls (0.335 ± 0.0592 mg/ml, P = 0.0451). Meanwhile, the glucose quantity in IDH1mutant glioma samples were significantly lower than those in IDH1 wild-type tissues (1.033 ± 1.19608 vs 6.361 ± 4.3909 mg/g, P = 0.0051). Silico analysis and western blot confirmed that HK1 and PKM2 in IDH1 wild-type gliomas were significantly higher than in IDH1 mutant group, while PC was significantly higher in IDH1 mutant gliomas. CONCLUSION: SUVmax on PET can predict IDH1 mutation with adequate sensitivity and specificity, as is supported by reduced glucose consumption in IDH1 mutant gliomas.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Glucosa/metabolismo , Isocitrato Deshidrogenasa/genética , Mutación , Tomografía de Emisión de Positrones/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Estudios de Casos y Controles , Fluorodesoxiglucosa F18/metabolismo , Estudios de Seguimiento , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/metabolismo , Humanos , Pronóstico , Curva ROC , Radiofármacos/metabolismo , Células Tumorales Cultivadas
17.
Mol Oncol ; 15(5): 1466-1485, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33314660

RESUMEN

Tumor growth, especially in the late stage, requires adequate nutrients and rich vasculature, in which PKM2 plays a convergent role. It has been reported that PKM2, together with FOXM1D, is upregulated in late-stage colorectal cancer and associated with metastasis; however, their underlying mechanism for promoting tumor progression remains elusive. Herein, we revealed that FOXM1D potentiates PKM2-mediated glycolysis and angiogenesis through multiple protein-protein interactions. In the presence of FBP, FOXM1D binds to tetrameric PKM2 and assembles a heterooctamer, restraining PKM2 metabolic activity by about a half and thereby promoting aerobic glycolysis. Furthermore, FOXM1D interacts with PKM2 and NF-κB and induces their nuclear translocation with the assistance of the nuclear transporter importin 4. Once in the nucleus, PKM2 and NF-κB complexes subsequently augment VEGFA transcription. The increased VEGFA is secreted extracellularly via exosomes, an event potentiated by the interaction of FOXM1 with VPS11, eventually promoting tumor angiogenesis. Based on these findings, our study provides another insight into the role of PKM2 in the regulation of glycolysis and angiogenesis.


Asunto(s)
Proteínas Portadoras/fisiología , Proteína Forkhead Box M1/fisiología , Glucólisis/genética , Proteínas de la Membrana/fisiología , Neoplasias , Neovascularización Patológica , Hormonas Tiroideas/fisiología , Proteínas Portadoras/metabolismo , Células Cultivadas , Proteína Forkhead Box M1/metabolismo , Células HEK293 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas de la Membrana/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/genética , Neoplasias/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Unión Proteica/genética , Isoformas de Proteínas , Transporte de Proteínas/genética , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
18.
Sci China Life Sci ; 63(7): 953-985, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32548680

RESUMEN

Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.


Asunto(s)
Membrana Celular/metabolismo , Orgánulos/metabolismo , Animales , Autofagia , Fenómenos Fisiológicos Celulares , Cromatina/metabolismo , Expresión Génica , Humanos , Cinética , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Transición de Fase , Pliegue de Proteína , Proteínas , Proteolisis , Propiedades de Superficie
19.
Nat Commun ; 11(1): 2266, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385244

RESUMEN

The evolutionarily conserved Par3/Par6/aPKC complex regulates the polarity establishment of diverse cell types and distinct polarity-driven functions. However, how the Par complex is concentrated beneath the membrane to initiate cell polarization remains unclear. Here we show that the Par complex exhibits cell cycle-dependent condensation in Drosophila neuroblasts, driven by liquid-liquid phase separation. The open conformation of Par3 undergoes autonomous phase separation likely due to its NTD-mediated oligomerization. Par6, via C-terminal tail binding to Par3 PDZ3, can be enriched to Par3 condensates and in return dramatically promote Par3 phase separation. aPKC can also be concentrated to the Par3N/Par6 condensates as a client. Interestingly, activated aPKC can disperse the Par3/Par6 condensates via phosphorylation of Par3. Perturbations of Par3/Par6 phase separation impair the establishment of apical-basal polarity during neuroblast asymmetric divisions and lead to defective lineage development. We propose that phase separation may be a common mechanism for localized cortical condensation of cell polarity complexes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Células COS , Ciclo Celular , Diferenciación Celular , Supervivencia Celular , Chlorocebus aethiops , Proteínas de Drosophila/química , Drosophila melanogaster/citología , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Larva/citología , Complejos Multiproteicos/química , Neuronas/citología , Neuronas/metabolismo , Dominios Proteicos , Proteína Quinasa C/metabolismo , Ratas
20.
Sci China Life Sci ; 63(9): 1394-1405, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32157557

RESUMEN

Cancer cells remodel their metabolic network to adapt to variable nutrient availability. Pentose phosphate pathway (PPP) plays protective and biosynthetic roles by oxidizing glucose to generate reducing power and ribose. How cancer cells modulate PPP activity in response to glucose supply remains unclear. Here we show that ribose-5-phosphate isomerase A (RPIA), an enzyme in PPP, directly interacts with co-activator associated arginine methyltransferase 1 (CARM1) and is methylated at arginine 42 (R42). R42 methylation up-regulates the catalytic activity of RPIA. Furthermore, glucose deprivation strengthens the binding of CARM1 with RPIA to induce R42 hypermethylation. Insufficient glucose supply links to RPIA hypermethylation at R42, which increases oxidative PPP flux. RPIA methylation supports ROS clearance by enhancing NADPH production and fuels nucleic acid synthesis by increasing ribose supply. Importantly, RPIA methylation at R42 significantly potentiates colorectal cancer cell survival under glucose starvation. Collectively, RPIA methylation connects glucose availability to nucleotide synthesis and redox homeostasis.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Arginina/química , Neoplasias Colorrectales/metabolismo , Glucosa/metabolismo , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular , Técnicas de Inactivación de Genes , Humanos , Metilación , Ratones , Ratones Desnudos , NADP/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato , Unión Proteica , Proteína-Arginina N-Metiltransferasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...