Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 406: 130937, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852892

RESUMEN

Thermal hydrolyzed sludge (THS) exhibits considerable promise in generating medium-chain fatty acids (MCFAs) through chain elongation (CE) technology. This study developed a novel continuous CE process using THS as the substrate, achieving an optimal ethanol loading rate (5.8 g COD/L/d) and stable MCFA production at 10.9 g COD/L, with a rate of 3.6 g COD/L/d. The MCFAs primarily comprised n-caproate and n-caprylate, representing 41.5 % and 54.3 % of the total MCFAs, respectively. Utilization efficiencies for ethanol and acetate were nearly complete at 100 % and 92.8 %, respectively. Key microbial taxa identified under these optimal conditions included Alcaligenes, SRB2, Sporanaerobacter, and Kurthia, which were instrumental in critical pathways such as the generation of acetyl-CoA, the initial carboxylation of acetyl-CoA, the fatty acid biosynthesis cycle, and energy metabolism. This research provides a theoretical and technical blueprint for converting waste sludge into valuable MCFAs, promoting sustainable waste-to-resource strategies.


Asunto(s)
Carbono , Ácidos Grasos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Carbono/metabolismo , Ácidos Grasos/metabolismo , Etanol/metabolismo , Bacterias/metabolismo , Hidrólisis , Reactores Biológicos
2.
Environ Sci Technol ; 58(14): 6296-6304, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38556999

RESUMEN

Anaerobic digestion (AD) is an important biological resource recovery process, where microorganisms play key roles for material transformation. There has been some knowledge about the prokaryotic community and antibiotic resistance genes (ARGs) in AD, but there has been very limited knowledge of phages. In this study, samples from a full-scale AD plant were collected over 13 months, sequenced, and analyzed for viral and prokaryotic metagenomes. Totally, 3015 viral operational taxonomic units (vOTUs) were detected, mostly assigned to Caudoviricetes. The phage community had faster temporal variation than the prokaryotic community. Warm seasons harbored a higher abundance of both temperate phages and broad host-range phages. Seven ARGs of 6 subtypes were carried by 20 vOTUs, a representative ermT gene was synthesized and expressed, and the resistance activity in the host was examined, confirming the real activity of virus-carried ARGs in the AD process. Some of the ARGs were horizontally transferred between the phage and prokaryotic genomes. However, phage infection was not found to contribute to ARG transfer. This study provided an insight into the ecological patterns of the phage community, confirmed the antibiotic resistance activity of virus-carried ARGs, evaluated the contribution of phages on the ARG prevalence, and laid the foundation for the control strategies of the community and antibiotic resistance in the AD process.


Asunto(s)
Bacteriófagos , Aguas del Alcantarillado , Bacteriófagos/genética , Antibacterianos/farmacología , Anaerobiosis , Prevalencia , Farmacorresistencia Microbiana/genética , Genes Bacterianos
3.
J Environ Manage ; 354: 120459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402788

RESUMEN

In recent years, there has been a marked increase in the production of excess sludge. Chain-elongation (CE) fermentation presents a promising approach for carbon resource recovery from sludge, enabling the transformation of carbon into medium-chain fatty acids (MCFAs). However, the impact of sulfate, commonly presents in sludge, on the CE process remains largely unexplored. In this study, batch tests for CE process of sludge anaerobic fermentation liquid (SAFL) under different SCOD/SO42- ratios were performed. The moderate sulfate reduction under the optimum SCOD/SO42- of 20:1 enhanced the n-caproate production, giving the maximum n-caproate concentration, selectivity and production rate of 5.49 g COD/L, 21.4% and 4.87 g COD/L/d, respectively. The excessive sulfate reduction under SCOD/SO42- ≤ 5 completely inhibited the CE process, resulting in almost no n-caproate generation. The variations in n-caproate production under different conditions of SCOD/SO42- were all well fitted with the modified Gompertz kinetic model. Alcaligenes and Ruminococcaceae_UCG-014 were the dominant genus-level biomarkers under moderate sulfate reduction (SCOD/SO42- = 20), which enhanced the n-caproate production by increasing the generation of acetyl-CoA and the hydrolysis of difficult biodegradable substances in SAFL. The findings presented in this work elucidate a strategy and provide a theoretical framework for the further enhancement of MCFAs production from excess sludge.


Asunto(s)
Caproatos , Aguas del Alcantarillado , Fermentación , Anaerobiosis , Ácidos Grasos Volátiles , Ácidos Grasos , Carbono
4.
Environ Res ; 243: 117749, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061589

RESUMEN

The microbial community in activated sludge is composed of a small number of abundant sub-community with high abundance and a large number of rare sub-community with limited abundance. Our knowledge regarding the ecological properties of both abundant and rare sub-communities in activated sludge is limited. This article presented an analysis of functional prediction, assembly mechanisms, and biogeographic distribution characteristics of abundant and rare sub-communities in 211 activated sludge samples from 60 wastewater treatment plants across China. Moreover, this study investigated the dominant factors influencing the community structure of these two microbial groups. The results showed that the functions associated with carbon and nitrogen cycling were primarily detected in abundant sub-community, while rare sub-community were primarily involved in sulfur cycling. Both microbial groups were mainly influenced by dispersal limitation, which, to some extent, resulted in a distance-decay relationship in their biogeographic distribution. Moreover, a higher spatial turnover rate of rare sub-communities (0.0887) suggested that spatial differences in microbial community structure among different WWTPs may mainly result from rare sub-community. Moreover, SEM showed that geographic locations affected rare sub-communities greatly, which agreed with their higher dispersal limitation and turnover rate. In contrast, influent characteristics showed stronger correlations with abundant sub-communities, suggesting that abundant sub-community may contribute more to the removal of pollutants. This study enhanced our understanding of abundant and rare microorganisms in activated sludge especially the role of rare species and provided scientific evidence for precise regulation and control of wastewater treatment plants.


Asunto(s)
Microbiota , Purificación del Agua , Aguas del Alcantarillado , China
5.
Bioresour Technol ; 394: 130267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154733

RESUMEN

The long-term occurrence, dynamics and risk of antibiotic resistance genes (ARGs) in anaerobic digestion (AD) of excess sludge (ES) are not fully understood. Therefore, 13-month metagenomic monitoring was carried out in a full-scale AD plant. The highest ARG abundance and risk scores were observed in spring. AD achieved a 35 % removal rate for the total ARG abundance, but the risk score of AD sludge was not always lower than ES samples, because of the higher proportion of Rank I ARGs in AD sludge. ARGs showed less obvious patterns under linear models compared with microbial community, implying their chaotic dynamics, which was further confirmed by nonlinearity tests. Empirical dynamic modeling performed better than the autoregressive integrated moving average model for ARG dynamics, especially for those with simple and nonlinear dynamics. This study highlighted spring for its higher ARG abundance and risk, and recommended nonlinear models for revealing the dynamics of ARGs.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Antibacterianos/farmacología , Anaerobiosis , Genes Bacterianos/genética , Farmacorresistencia Microbiana/genética
6.
Sci Total Environ ; 903: 166246, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37582448

RESUMEN

Membrane bioreactor (MBR) and nanofiltration (NF) process has been attractive in wastewater reclamation, and was set as the target process in this study. Dissolved organic matter (DOM) and trace organic contaminants (TrOCs), closely associated with water safety, are noteworthy pollutants. Though the general DOM characteristics and TrOCs removal in MBR-NF reclamation process have been reported in lab-/pilot-scale experiment, the molecular characteristics of DOM revealed by high resolution mass spectrometry, and the correlation between DOM and TrOCs have been rarely studied in full-scale MBR-NF wastewater reclamation plant. In this work, biological and NF processes contributed significantly to the removal of DOM and TrOCs, while MBR filtration contributed slightly. Spectroscopic analyses revealed that DOM with higher aromaticity and lower molecular weight were more recalcitrant along the treatment. Aromatic protein-like substances were preferentially removed comparing to humic-like substances. Fourier transform ion cyclotron resonance mass spectrometry was applied to investigate DOM transformation at molecular level. DOM molecules with higher H/C and lower O/C, especially the aliphatics and peptides, were readily biodegraded into higher­oxygenate, highly unsaturated, and aromatic compounds. The generated species mainly included condensed aromatics, polyphenols, and highly unsaturated compounds. Filtration in MBR tended to reject higher oxygenated molecules. NF effectively removed most of the DOM molecules, especially higher oxygenated molecules with low H, N and S. The residual TrOCs in the NF effluent, including sulfamethoxazole, ofloxacin, and bisphenol A, still displayed above medium environmental risk. Significant correlations were found among organic compounds, spectral indices, and peptides molecules. Positive correlation between most of the TrOCs and several DOM parameters implied that they were synchronously removed in biological and membrane filtration processes. SUVA and FI might be potential indexes in monitoring the performance of MBR-NF process in both DOM and TrOC removal. These findings would expand the understanding of DOM and TrOCs behavior in wastewater reclamation process and simplify an in-depth system monitoring.

7.
Water Res ; 243: 120434, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37573843

RESUMEN

In this study, a carboxylate platform of hyperthermophilic (70 â„ƒ) anaerobic fermentation (HAF) for short chain fatty acids (SCFAs) production from thermal hydrolyzed sludge (THS) was established. The long-term performance for SCFAs production and the microbial communities of this HAF under different SRTs were systematically investigated. Under the optimum SRT of 3 d, the HAF had the highest acetate production rate of 1.12 g COD/L/d which accounted for 60% in SCFAs. It also rendered a good performance in SCFAs production, with concentration, production rate and yield of 6.61 g COD/L, 1.86 g COD/L/d and 324 g COD/kg VSSin, respectively. Nearly no biogas produced from this system, which reduced the loss of carbon sources from the system. This was due to the inhibition of methanogenesis by the hyperthermophilic condition and the high content of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN). Tepidimicrobium, Bhargavaea and XBB1006 were the dominant genus-level biomarkers under the optimum SRT, which facilitated the decomposition of monosaccharides, amino acids, terpenoids and polyketides into SCFAs. This work provides an applicable anaerobic carboxylate platform for highly efficient SCFAs production from excess sludge.


Asunto(s)
Amoníaco , Aguas del Alcantarillado , Fermentación , Aguas del Alcantarillado/química , Anaerobiosis , Ácidos Grasos Volátiles , Nitrógeno , Concentración de Iones de Hidrógeno
8.
Environ Res ; 235: 116660, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451573

RESUMEN

In order to gain a deeper understanding of the microbial interactions in wastewater treatment plants (WWTPs) in China and clarify the role of the core community in the microbial interactions in activated sludge (AS), this study used a molecular ecological network approach based on random matrix theory to construct co-occurrence networks of the core microorganisms (CoreN), the whole AS community (WholeN) and the microbial communities without the core microorganisms (OtherN), respectively. It was shown that the WholeN had more complex and tighter connections compared with the OtherN, because of its higher total number of nodes, higher average clustering coefficient, and shorter average geodesic distance. The proportions of positive links in the CoreN, WholeN and OtherN were gradually decreased, indicating that the core microorganisms promoted cooperation between AS microorganisms. Moreover, higher robustness after random removal of 50% of the nodes of the WholeN (0.2836 ± 0.0311) was observed than the robustness of the OtherN (0.1152 ± 0.0263). In addition, the vulnerability of OtherN (0.0514) is significantly higher than WholeN (0.0225). Meanwhile, the average ratio of negative/positive cohesion, was significantly decreased when the core microorganisms were removed. These results demonstrated that core community could strengthen the stability of the ecological network in AS. By discerning the key factors affecting ecological network, AS temperature was observed to have a strong correlation with all three networks. Moreover, pollutants in wastewater shown stronger correlations with the CoreN and WholeN, supporting the point that core community play a critical role in pollutant removal in WWTPs to a certain extent.


Asunto(s)
Contaminantes Ambientales , Microbiota , Aguas del Alcantarillado , Aguas Residuales , Interacciones Microbianas
9.
Water Res ; 235: 119866, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934542

RESUMEN

Extracellular polymeric substances (EPS), with a stratified structure including tightly-bound EPS (TB-EPS), loosely-bound EPS (LB-EPS), and soluble EPS (S-EPS) surrounding the microbial cells, are known to vitally affect the physicochemical and biological functions of activated sludge in wastewater treatment. Polysaccharides (PS), proteins (PN), and humic acids (HA) are key components of EPS but their roles in constructing the multi-layer architecture are still unclear. This study explored the EPS characteristics in relation to the components using spectroscopic fingerprinting techniques. Ultraviolet-visible (UV-vis) spectra demonstrated stark difference between TB-EPS and other EPS. Fluorescence excitation-emission matrix (FEEM) and apparent quantum yield revealed further detailed differences. Fluorescence quotient analysis highlighted the dominance of TB-EPS, LB-EPS, and S-EPS in the excitation/emission wavelength (Ex/Em) region of Em = 350-400 nm, Em > 400 nm, and low-Stokes shift band (Em - Ex < 25 nm), respectively. Wavelength-wise prediction of the FEEM intensity was achieved through multiple linear regression against the chemical composition and variance partitioning analysis witnessed binary interactions of PS×HA and PS×PN in S-EPS, PN×HA and PS×PN in LB-EPS, and ternary interaction of PS×PN×HA in TB-EPS as well as the wavelength-specific fluorescence responses of these interactions. Further, X-ray photoelectron spectroscopy, infrared spectra, and circular dichroism spectra corroborated the differences in primary, secondary, and tertiary structures across the EPS layers. Ultrahigh-performance liquid chromatography-mass spectrometry detected molecular fragments confirming the multi-component hybridization among PS, PN, and HA. This study demonstrates a spectroscopic approach to sensitively fingerprint the fine structure of EPS, which has the potential for rapid monitoring of EPS and related sludge properties in wastewater treatment systems.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Matriz Extracelular de Sustancias Poliméricas/química , Polisacáridos/análisis , Proteínas/análisis , Análisis Espectral
10.
J Hazard Mater ; 445: 130419, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36455329

RESUMEN

6:2 Fluorotelomer sulfonic acid (6:2 FTS) has been identified as an alternative to perfluorooctane sulfonic acid but has been proven to cause potential threats to humans and the environment. In this study, boron nitride (BN) photocatalysis was explored for 6:2 FTS degradation with 100% removal (kobs=1.8 h-1) and desulfurization rate of 100% as well as the defluorination rate of 57.3%. The superior performance of BN was primarily related to oxygen dopants defects (O-dopants). In addition, O-dopants contribution was confirmed by ball-milled BN (B-BN), which introduced more O-dopants and exhibited an increased 6:2 FTS degradation rate of 2.88 h-1. The decomposition of 6:2 FTS was attributed to holes (h+), hydroxyl radicals (•OH), and superoxide (•O2-) and proceeded via two pathways, the hydrogen abstraction from ethyl carbons by •OH and the C-S bond activation by h+ and •OH. To the best of our knowledge, this is the first study demonstrating that h+, •OH, and •O2- played significant roles in the heterogeneous photocatalytic degradation of 6:2 FTS.


Asunto(s)
Oxígeno , Ácidos Sulfónicos , Humanos , Compuestos de Boro/química
11.
Huan Jing Ke Xue ; 43(3): 1529-1534, 2022 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-35258217

RESUMEN

The performance of wastewater treatment plants (WWTPs) mainly relies on the microbial community in activated sludge (AS). The food to microorganisms (F/M) ratio is an important operational parameter, the recommended value of which is between 0.2 and 0.5 kg·(kg·d)-1. The F/M directly influences microbial growth and metabolism, but how the F/M ratio affects AS microbial networks and the related mechanisms remain unclear. In this study, 63 AS samples with different F/M ratios were analyzed by utilizing a random-matrix-theory based network pipeline. Firstly, all 63 samples were divided into three groups based on their F/M ratios (lower F/M group, normal F/M group, and higher F/M group). The results indicated that the lower F/M decreased microbial diversity and evenness significantly, but the higher F/M had no significant effects on the diversity of the microbial community. All three constructed networks were scale-free, small world, and modular, but network size and complexity were decreased in the lower and higher F/M groups. The network of the normal F/M ratio group was detected with the most nodes, the highest average clustering coefficient, and the shortest geodesic distance. The proportion of positive links was 76.8% when the F/M was within the normal range. On the contrary, 71.1% and 60.0% of positive links were identified when the F/M was below 0.2 and above 0.5 kg·(kg·d)-1. Moreover, 24 keystones were detected in the normal F/M network, whereas only 4 and 7 keystones were detected in the lower and higher F/M networks. Overall, our results provided clear evidence that the AS microbial community could be more stable and resilient to environmental disturbance when the F/M ratio was between 0.2 and 0.5 kg·(kg·d)-1.


Asunto(s)
Microbiota , Purificación del Agua , Consorcios Microbianos , Aguas del Alcantarillado , Aguas Residuales
12.
Chemosphere ; 295: 133946, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35151702

RESUMEN

M-BTCs (M = Fe, Co and Mn)/melamine were used to prepare N-doped carbon materials, and their performances as activator of peroxymonosulfate (PMS) for sulfamethazine (SMZ) removal were compared. M-BTC type metal-organic frameworks (MOFs) were synthesized under room temperature, with their yield about 7.5 times of ZIF-67 which is the most used MOFs to prepare N-doped carbon materials as the catalyst of persulfate-based advanced oxidation processes. Co-BTC/melamine derived N-doped carbon materials (Co-BTC/5MNC) performed the best, even better than that of ZIF-67 derived N-doped carbon materials. Initial pH (3-9), 0-10 mM inorganic anions (Cl-, NO3-, HCO3- and H2PO42-) and humic acid (5 and 10 mg/L) had no obvious inhibition on SMZ removal with Co-BTC/5MNC as catalyst. The results of both X-ray photoelectron spectroscopy and density functional theory (DFT) calculations indicated that N-coordinated cobalt single atom site (Co-Nx) was the possible active site of Co-BTC/5MNC. Importantly, surface-bound SO4•- was identified as the dominant reactive oxygen species for SMZ removal. The SO4•- generated through the charge transfer between PMS and catalyst, and was tightly adsorbed on Co-Nx site.


Asunto(s)
Estructuras Metalorgánicas , Sulfametazina , Carbono/química , Peróxidos/química , Sulfametazina/química
13.
J Environ Sci (China) ; 115: 341-349, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969461

RESUMEN

As one of the most well-documented biogeographic patterns, the distance-decay relationship provides insights into the underlying mechanisms driving biodiversity distribution. Although wastewater treatment plants (WWTPs) are well-controlled engineered ecosystems, this pattern has been seen among microbial communities in activated sludge (AS). However, little is known about the relative importance of environmental heterogeneity and dispersal limitation in shaping AS microbial community across China; especially they are related to spatial scale and organism types. Here, we assessed the distance-decay relationship based on different spatial scales and microbial phylogenetic groups by analyzing 132 activated sludge (AS) samples across China comprising 3,379,200 16S rRNA sequences. Our results indicated that the drivers of distance-decay pattern in China were scale-dependent. Microbial biogeographic patterns in WWTPs were mainly driven by dispersal limitation at both local and national scales. In contrast, conductivity, SRT, and pH played dominant roles in shaping AS microbial community compositions at the regional scale. Turnover rates and the drivers of beta-diversity also varied with microorganism populations. Moreover, a quantitative relationship between dispersal limitation ratio and AS microbial turnover rate was generated. Collectively, these results highlighted the importance of considering multiple spatial scales and micro-organism types for understanding microbial biogeography in WWTPs and provided new insights into predicting variations in AS community structure in response to environmental disturbance.


Asunto(s)
Microbiota , Purificación del Agua , Biodiversidad , China , Filogenia , ARN Ribosómico 16S/genética
14.
Water Res ; 200: 117295, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34091223

RESUMEN

The optimal operation and functional stability of a wastewater treatment plant (WWTP) strongly depend on the properties of its microbial community. However, a knowledge gap remains regarding the seasonal dynamics of microbial community properties, especially phylogenetic group based assembly and co-occurrence patterns. Accordingly, in this study, influent and activated sludge (AS) samples were weekly collected from 2 full-scale WWTPs for one year (89 influent and 103 AS samples in total) and examined by high-throughput Illumina-MiSeq sequencing. The results suggested that the microbial community diversity and composition in the influent fluctuated substantially with season, while those in the AS had a relatively more stable pattern throughout the year. The phylogenetic group based assembly mechanisms of AS community were identified by using "Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model (iCAMP)". The results showed that drift accounted for the largest proportion (52.8%), while homogeneous selection (18.2%) was the most important deterministic process. Deterministic processes dominated in 47 microbial groups (bins), which were also found (~40%) in the AS core taxa dataset. Moreover, the results suggested that Nitrospira were more susceptible to stochastic processes in winter, which may provide a possible explanation for nitrification failure in winter. Network analysis results suggested that the network structure of the AS community could be more stable in summer and autumn. In addition, there were no identical keystone taxa found in different networks (constructed from different plants, sources, and seasons), which supported the context dependency theory. The results of this study deepened our understanding of the microbial ecology in AS systems and provided a foundation for further studies on the community regulation strategy of WWTPs.


Asunto(s)
Microbiota , Purificación del Agua , Filogenia , Estaciones del Año , Aguas del Alcantarillado
15.
Sci Total Environ ; 791: 148302, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126495

RESUMEN

This study aimed to explore the effect of temperature on the persistence of fecal bacteria by multiple approaches in ambient anaerobic digestion systems treating swine manure. Both lab-scale (15 °C, 20 °C, and 25 °C) and field (26 °C on average) studies were conducted by high-throughput sequencing and culture-based methods. A community-wide Bayesian SourceTracker method was used to identify and estimate the fecal bacterial proportion in anaerobic effluent. High proportional contributions of fecal bacteria were observed in effluent at 15 °C (73%) and 20 °C (75%), while less was found at 25 °C (19%). This was further verified by a field study (23%) and an anaerobic reactor study at 37 °C (0.01%). To explore the potential reasons for differences in fecal bacterial proportions, bacterial taxa were divided into "lost" and "survivor" taxa in manure waste by LEfSe. The "survivor" taxa abundance was positively correlated with SourceTracker proportion (r = 0.913, P = 0.001), but negatively correlated with temperature (r = -0.826, P = 0.006). In addition, biomarkers in effluent were divided into "enriched" and "de novo" taxa. "Enriched" taxa, including acidogenic and acetogenic bacteria, were found at all temperatures, whereas taxa related to organic degradation were multiplied "de novo" at 25 °C. Variation partition analysis showed that temperature could explain 30% of variations in effluent bacterial community. Moreover, coliforms isolated from the manure and effluents at 15 °C and 20 °C were also phylogenetically related. This study provided comprehensive insight into the impact of temperature on the persistence of fecal bacteria in anaerobic effluent, with temperatures over 25 °C recommended to reduce fecal pollution.


Asunto(s)
Bacterias , Estiércol , Anaerobiosis , Animales , Bacterias Anaerobias , Teorema de Bayes , Reactores Biológicos , Porcinos , Temperatura
16.
Sci Total Environ ; 785: 147328, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940402

RESUMEN

Manganese dioxide has been widely recognized as catalyst in catalytic ozonation for organic pollutants removal from wastewater in recent decades. However, few studies focus on the structure-activity relationship of MnO2 and catalytic ozonation mechanism in water. In the present study, the oxidative reactivity of three different crystal phases of MnO2 corresponding to α-MnO2, ß-MnO2 and γ-MnO2 towards metoprolol (MET) and ibuprofen (IBU) were evaluated. α-MnO2 was found to contain the most abundant oxygen vacancy and readily reducible surface adsorbed oxygen (O2-, O-, OH-), which facilitated an increase of ozone utilization and the highest catalytic performance with 99% degradation efficiency for IBU and MET. α-MnO2 was then selected to investigate the optimum key operating parameters with a result of catalyst dosage 0.1 g/L, ozone dosage 1 mg/min and an initial pH 7. The introduction of α-MnO2 promoted reactive oxygen species (O2-, O-, OH-) generation which played significant roles in IBU degradation. Probable degradation pathways of MET and IBU were proposed according to the organic intermediates identified and the reaction sites based on density function theory (DFT) calculations. The present study deepened our understanding on the MnO2 catalyzed ozonation and provided reference to enhance the process efficiency.


Asunto(s)
Nanopartículas , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Ibuprofeno , Compuestos de Manganeso , Metoprolol , Óxidos , Contaminantes Químicos del Agua/análisis
17.
Environ Pollut ; 273: 116487, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33482461

RESUMEN

Discerning the differences in activated sludge (AS) microbial community due to geographic location and environmental and operational factors is of great significance for precise design and maintenance of wastewater treatment plants (WWTPs). Hence, in this study, 150 AS samples collected from WWTPs in South China and North China were analyzed by 16 S rRNA gene sequencing. In general, AS microbial community in North China had lower diversity, higher proportions of stochastic assembly (35.7% v.s. 15.8%) and more network keystone species (19 v.s. 5) compared with southern AS community. Conductivity and SRT had significant effects on AS community in both regions. Latitude, annual mean temperature, and influent BOD, COD, and ammonia influenced South China community significantly, while pH and influent total phosphorus affected North China community. To achieve stable performance, southern WWTPs should carefully monitor fluctuations in wastewater characteristics, while northern WWTPs should monitor AS communities for shifts in the dominant taxa from immigrant strains brought in through the influent. Additionally, WWTPs in North China should be aware of the need to proactively control sludge bulking because of the high abundance and occurrence of Haliscomenobacter in these AS communities. MAIN FINDING: The call for regional design based on the regional discrepancy of microbial communities in activated sludge is uncovered and according suggestions were given.

18.
Environ Pollut ; 274: 115866, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33277062

RESUMEN

Selenium (Se) and arsenic (As) are toxic contaminants in surface water and drinking water. The human body needs little quantity of Se, but too high dose is not allowed. Metal oxides such as iron oxides were used for adsorption or co-precipitation removal of As from water. However, the regeneration and stability problems of metals oxides sorbents are unsatisfactory , and there is not enough adsorbent for Se removal from water also. We developed the acrylic amine fiber (AAF) for adsorption reomval of Se and As from water and systematically studied the influenced factors. Batch experiments were conducted for investigating the adsorption edges, while column filtration tests were employed for dynamic application edges. At neutral pH, the Langmuir isotherm fittings gave the maximum adsorption capacities of As(V), As(III), Se(VI) and Se(IV) are 270.3, 40.5, 256.4, and 158.7 mg/g, respectively. Effects of co-existing inorganic anions on As(V) and Se(VI) adsorption using AAF gave the order of PO43- > SO42- > NO3- > SiO32-, while different organic acids obey the order of citric acid > oxalic acid > formic acid. Fourier transform infrared analysis showed the PO43- and SO42- competition mechanisms are electrostatic repulsions, while the competition of organic acids derived from acid-base reaction between the carboxyl group and the amino group. Column filtration and regeneration results showed that the spent AAF can be regenerated using 0.5 mol/L HCl solution and reused with no much decrease of adsorption capacity.


Asunto(s)
Arsénico , Selenio , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Aminas , Arsénico/análisis , Humanos , Concentración de Iones de Hidrógeno , Cinética , Agua , Contaminantes Químicos del Agua/análisis
19.
Sci Total Environ ; 749: 141494, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32827827

RESUMEN

Reclaimed water is in huge demand in water-deficient cities. However, nitrogen, pharmaceuticals and personal care products (PPCPs) are frequent contaminants in reclaimed water that are probable to bring environmental risks. To develop a technology for safe reclaimed water production, in this study, a renovated filter that integrates solid-phase denitrification (SPD) with biodegradable polymer poly-3-hydroxybutyrate-co-hydroxyvalerate (PHBV) and granular activated carbon (GAC) adsorption (SPD-GAC filter) was proposed and applied to remove nitrogen and target PPCPs (metoprolol and diclofenac) simultaneously. The influences of different ratio of the filled PHBV and GAC, and the hydraulic retention time (HRT) on the removal performances were investigated. The results showed that the filter with PHBV/GAC = 1 (25 cm PHBV/25 cm GAC) simultaneously achieved an average NO3--N removal efficiency of about 95% with no accumulation of ammonia and nitrite, and an average removal efficiency of PPCPs of about 80%. Compared with PHBV-based SPD system, the integrated SPD-GAC filter significantly improved the control of carbon release and the PPCP removals. SPD-GAC filter also exhibited a strong tolerance for the variation of influent NO3--N loading rate, achieving a highest denitrification rate of 0.76-0.82 g N·(L·d)-1. The integrated SPD-GAC filter proves to be a promising technology for the simultaneous removal of nitrogen and PPCPs from the secondary effluent.

20.
Sci Total Environ ; 744: 140954, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32755784

RESUMEN

The emerging contaminants, in particular pharmaceuticals and personal care products and environmental estrogens, have been received global concerns in recent years. Nanofiltration (NF) as an advanced tertiary treatment technology can be a reliable and potential tool for micropollutants removal. However, the influence of operation conditions of NF system to micropollutants rejections in an engineering application, is still lacking. Here, a pilot-scale NF system was set up to investigate its removal efficiencies to 49 micropollutants under different operation conditions by treating actual municipal wastewater. The results showed that the rejections of positively and neutrally charged micropollutants with molecular weight higher than 250 g mol-1 were both higher than 80%. Besides, most negatively charged micropollutants were also rejected higher than 80% under different operation conditions. The rejections of most micropollutants increased with temperature decreased from 25 °C to 13 °C, which was primarily ascribed to decrease of pore size of NF membrane at low temperature. Compared with the water recovery rate of 80%, lower rejections of micropollutants were observed with lower water recovery rate of 60%. Except for sulfamethoxazole, the risk quotients of other detected 20 micropollutants in NF effluent were all lower than 1.0, showing medium or no risks to aquatic organisms. This study might aid understanding the performance of micropollutants rejections by NF in actual engineering application and could give guideline to the implementation of NF technology in future advanced treatment processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA