Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(4): 1316-1323, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38227973

RESUMEN

Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.

2.
Phys Rev Lett ; 108(22): 223907, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23003600

RESUMEN

We experimentally demonstrate selective control of the Q and transmission of an individual resonance of an optical microcavity by optically controlling its intracavity loss via inverse Raman scattering. A strongly overcoupled resonance is brought into critical coupling with continuous tuning of the on-resonance transmission by >9 dB and reduction of the intrinsic Q factor by more than a factor of five. Adjacent resonances experience minimal disturbance and can be selectively controlled by tuning the control beam to the appropriate control resonance. These dynamics are analogous to Zeno effects observed in decoherence-driven atomic ensembles and two-level systems.

3.
Opt Lett ; 36(17): 3398-400, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21886223

RESUMEN

We demonstrate a frequency comb spanning an octave via the parametric process of cascaded four-wave mixing in a monolithic, high-Q silicon nitride microring resonator. The comb is generated from a single-frequency pump laser at 1562 nm and spans 128 THz with a spacing of 226 GHz, which can be tuned slightly with the pump power. In addition, we investigate the RF amplitude noise characteristics of the parametric comb and find that the comb can operate in a low-noise state with a 30 dB reduction in noise as the pump frequency is tuned into the cavity resonance.

4.
Opt Lett ; 36(8): 1413-5, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21499374

RESUMEN

We theoretically investigate a wavelength-selective all-optical switch using Raman-induced loss in a silicon resonator add-drop filter. We show that picojoule control pulses can selectively modulate and "erase" a single cavity resonance from full extinction to greater than 97% transmission while leaving adjacent resonances undisturbed. Full switching is achievable in less than 300 ps with only a few hundred femtojoule energy dissipation. This represents, to our knowledge, the first scheme for selective modulation of single resonances of an optical cavity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA