Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Adv Mater ; : e2407390, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267433

RESUMEN

The space charge layer (SCL) dilemma, caused by mobile anion concentration gradient and the rapid consumption of cations, is the fundamental reason for the generation of zinc dendrites, especially under high-rate discharge conditions. To address the issue, a physical (PbTiO3)/chemical (AMPS-Zn) barrier is designed to construct stable zinc ion flow and disrupt the gradient of anion concentration by coupling the ferroelectric effect with tethered anion electrolyte. The ferroelectric materials PbTiO3 with extreme-high piezoelectric constant can spontaneously generate an internal electric field to accelerate the movement of zinc ions, and the polyanionic polymer AMPS-Zn can repel mobile anions and disrupt the anions concentration gradient by tethering anions. Through numerical simulations and analyses, it is discovered that a high Zn2+ transference number can effectively weaken the SCL, thus suppressing the occurrence of zinc dendrites and parasitic side reactions. Consequently, an asymmetric cell using the PbTiO3@Zn demonstrates a reversible plating/stripping performance for 2900 h, and an asymmetric cell reaches a state-of-the-art runtime of 3450 h with a high average Coulombic efficiency of 99.98%. Furthermore, the PbTiO3@Zn/I2 battery demonstrated an impressive capacity retention rate of 84.0% over 65000 cycles by employing a slender Zn anode.

2.
Angew Chem Int Ed Engl ; 63(40): e202407639, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38976402

RESUMEN

Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn2+-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn2+) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier". This design robustly suppresses the (002) plane/dendrite growth, enabling ultradurable (002) plane-exposed dendrite-free Zn stripping/plating. Even being cycled in Zn‖Zn symmetric cell over 2150 h at 0.5 mA cm-2, the efficacy remains well-kept. Additionally, Zn‖Zn symmetric cells can be also stably cycled over 918 h at 1 mA cm-2, verifying uncompromised Zn stripping/plating kinetics. As-assembled anode-less Zn‖VOPO4 ⋅ 2H2O full cells with a low N/P ratio (2 : 1) show a high energy density of 75.2 Wh kg-1 full electrode after 842 cycles at 1 A g-1, far surpassing counterparts with thick Zn anode and low cathode loading mass, featuring excellent practicality. This study opens a new avenue by robust "hydrophobic ion barrier" design to develop long-life anode-less Zn batteries.

3.
Angew Chem Int Ed Engl ; : e202410434, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078870

RESUMEN

Hydrogel electrolytes (HEs) hold great promise in tackling severe issues emerging in aqueous zinc-ion batteries, but the prevalent salting-out effect of kosmotropic salt causes low ionic conductivity and electrochemical instability. Herein, a subtle molecular bridging strategy is proposed to enhance the compatibility between PVA and ZnSO4 from the perspective of hydrogen-bonding microenvironment re-construction. By introducing urea containing both an H-bond acceptor and donor, the broken H-bonds between PVA and H2O, initiated by the SO42--driven H2O polarization, could be re-united via intense intermolecular hydrogen bonds, thus leading to greatly increased carrying capacity of ZnSO4. The urea-modified PVA-ZnSO4 HEs featuring a high ionic conductivity up to 31.2 mS cm-1 successfully solves the sluggish ionic transport dilemma at the solid-solid interface. Moreover, an organic solid-electrolyte-interphase can be derived from the in-situ electro-polymerization of urea to prohibit H2O-involved side reactions, thereby prominently improving the reversibility of Zn chemistry. Consequently, Zn anodes witness an impressive lifespan extension from 50 h to 2200 h at 0.1 mA cm-2 while the Zn-I2 full battery maintains a remarkable Coulombic efficiency (>99.7%) even after 8000 cycles. The anti-salting-out strategy proposed in this work provides an insightful concept for addressing the phase separation issue of functional HEs.

4.
Nano Lett ; 24(22): 6465-6473, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767853

RESUMEN

Neutrophilic superhalide-anion-triggered chalcogen conversion-based Zn batteries, despite latent high-energy merit, usually suffer from a short lifespan caused by dendrite growth and shuttle effect. Here, a superhalide-anion-motivator reforming strategy is initiated to simultaneously manipulate the anode interface and Se conversion intermediates, realizing a bipolar regulation toward longevous energy-type Zn batteries. With ZnF2 chaotropic additives, the original large-radii superhalide zincate anion species in ionic liquid (IL) electrolytes are split into small F-containing species, boosting the formation of robust solid electrolyte interphases (SEI) for Zn dendrite inhibition. Simultaneously, ion radius reduced multiple F-containing Se conversion intermediates form, enhancing the interion interaction of charged products to suppress the shuttle effect. Consequently, Zn||Se batteries deliver a ca. 20-fold prolonged lifespan (2000 cycles) at 1 A g-1 and high energy/power density of 416.7 Wh kgSe-1/1.89 kW kgSe-1, outperforming those in F-free counterparts. Pouch cells with distinct plateaus and durable cyclability further substantiate the practicality of this design.

5.
Angew Chem Int Ed Engl ; 63(29): e202405593, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38716660

RESUMEN

For zinc-metal batteries, the instable chemistry at Zn/electrolyte interphasial region results in severe hydrogen evolution reaction (HER) and dendrite growth, significantly impairing Zn anode reversibility. Moreover, an often-overlooked aspect is this instability can be further exacerbated by the interaction with dissolved cathode species in full batteries. Here, inspired by sustained-release drug technology, an indium-chelated resin protective layer (Chelex-In), incorporating a sustained-release mechanism for indium, is developed on Zn surface, stabilizing the anode/electrolyte interphase to ensure reversible Zn plating/stripping performance throughout the entire lifespan of Zn//V2O5 batteries. The sustained-release indium onto Zn electrode promotes a persistent anticatalytic effect against HER and fosters uniform heterogeneous Zn nucleation. Meanwhile, on the electrolyte side, the residual resin matrix with immobilized iminodiacetates anions can also repel detrimental anions (SO4 2- and polyoxovanadate ions dissolved from V2O5 cathode) outside the electric double layer. This dual synergetic regulation on both electrode and electrolyte sides culminates a more stable interphasial environment, effectively enhancing Zn anode reversibility in practical high-areal-capacity full battery systems. Consequently, the bio-inspired Chelex-In protective layer enables an ultralong lifespan of Zn anode over 2800 h, which is also successfully demonstrated in ultrahigh areal capacity Zn//V2O5 full batteries (4.79 mAh cm-2).

6.
J Cell Mol Med ; 28(7): e18221, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509759

RESUMEN

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Asunto(s)
Glioma , Naftalenos , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Apoptosis , Autofagia , Línea Celular Tumoral , Proliferación Celular , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , Serina-Treonina Quinasas TOR/metabolismo , Naftalenos/farmacología
7.
Biochem Pharmacol ; 223: 116113, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460907

RESUMEN

Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.


Asunto(s)
Bencilisoquinolinas , Neoplasias Encefálicas , Glioma , Ratones , Animales , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Neoplasias Encefálicas/metabolismo , Glioma/patología , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Línea Celular Tumoral , Apoptosis , Resistencia a Antineoplásicos
8.
Quant Imaging Med Surg ; 14(1): 251-263, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223098

RESUMEN

Background: The mutational status of alpha-thalassemia X-linked intellectual disability (ATRX) is an important indicator for the treatment and prognosis of high-grade gliomas, but reliable ATRX testing currently requires invasive procedures. The objective of this study was to develop a clinical trait-imaging fusion model that combines preoperative magnetic resonance imaging (MRI) radiomics and deep learning (DL) features with clinical variables to predict ATRX status in isocitrate dehydrogenase (IDH)-mutant high-grade astrocytoma. Methods: A total of 234 patients with IDH-mutant high-grade astrocytoma (120 ATRX mutant type, 114 ATRX wild type) from 3 centers were retrospectively analyzed. Radiomics and DL features from different regions (edema, tumor, and the overall lesion) were extracted to construct multiple imaging models by combining different features in different regions for predicting ATRX status. An optimal imaging model was then selected, and its features and linear coefficients were used to calculate an imaging score. Finally, a fusion model was developed by combining the imaging score and clinical variables. The performance and application value of the fusion model were evaluated through the comparison of receiver operating characteristic curves, the construction of a nomogram, calibration curves, decision curves, and clinical application curves. Results: The overall hybrid model constructed with radiomics and DL features from the overall lesion was identified as the optimal imaging model. The fusion model showed the best prediction performance with an area under curve of 0.969 in the training set, 0.956 in the validation set, and 0.949 in the test set as compared to the optimal imaging model (0.966, 0.916, and 0.936, respectively) and clinical model (0.677, 0.641, 0.772, respectively). Conclusions: The clinical trait-imaging fusion model based on preoperative MRI could effectively predict the ATRX mutation status of individuals with IDH-mutant high-grade astrocytoma and has the potential to help patients through the development of a more effective treatment strategy before treatment.

9.
Angew Chem Int Ed Engl ; 63(15): e202400121, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38287460

RESUMEN

Bipolar organic cathode materials (OCMs) implementing cation/anion storage mechanisms are promising for high-energy aqueous Zn batteries (AZBs). However, conventional organic functional group active sites in OCMs usually fail to sufficiently unlock the high-voltage/capacity merits. Herein, we initially report dynamically ion-coordinated bipolar OCMs as cathodes with chalcogen active sites to solve this issue. Unlike conventional organic functional groups, chalcogens bonded with conjugated group undergo multielectron-involved positive-valence oxidation and negative-valence reduction, affording higher redox potentials and reversible capacities. With phenyl diselenide (PhSe-SePh, PDSe) as a proof of concept, it exhibits a conversion pathway from (PhSe)- to (PhSe-SePh)0 and then to (PhSe)+ as unveiled by characterization and theoretical simulation, where the diselenide bonds are periodically broken and healed, dynamically coordinating with ions (Zn2+ and OTF-). When confined into ordered mesoporous carbon (CMK-3), the dissolution of PDSe intermediates is greatly inhibited to obtain an ultralong lifespan without voltage/capacity compromise. The PDSe/CMK-3 || Zn batteries display high reversibility capacity (621.4 mAh gPDSe -1), distinct discharge plateau (up to 1.4 V), high energy density (578.3 Wh kgPDSe -1), and ultralong lifespan (12 000 cycles) at 10 A g-1, far outperforming conventional bipolar OCMs. This work sheds new light on conversion-type active site engineering for high-voltage/capacity bipolar OCMs towards high-energy AZBs.

10.
J Magn Reson Imaging ; 59(5): 1655-1664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37555723

RESUMEN

BACKGROUND: Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion has been verified as an independent and critical biomarker of negative prognosis and short survival in isocitrate dehydrogenase (IDH)-mutant astrocytoma. Therefore, noninvasive and accurate discrimination of CDKN2A/B homozygous deletion status is essential for the clinical management of IDH-mutant astrocytoma patients. PURPOSE: To develop a noninvasive, robust preoperative model based on MR image features for discriminating CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. STUDY TYPE: Retrospective. POPULATION: Two hundred fifty-one patients: 107 patients with CDKN2A/B homozygous deletion and 144 patients without CDKN2A/B homozygous deletion. FIELD STRENGTH/SEQUENCE: 3.0 T/1.5 T: Contrast-enhanced T1-weighted spin-echo inversion recovery sequence (CE-T1WI) and T2-weighted fluid-attenuation spin-echo inversion recovery sequence (T2FLAIR). ASSESSMENT: A total of 1106 radiomics and 1000 deep learning features extracted from CE-T1WI and T2FLAIR were used to develop models to discriminate the CDKN2A/B homozygous deletion status. Radiomics models, deep learning-based radiomics (DLR) models and the final integrated model combining radiomics features with deep learning features were developed and compared their preoperative discrimination performance. STATISTICAL TESTING: Pearson chi-square test and Mann Whitney U test were used for assessing the statistical differences in patients' clinical characteristics. The Delong test compared the statistical differences of receiver operating characteristic (ROC) curves and area under the curve (AUC) of different models. The significance threshold is P < 0.05. RESULTS: The final combined model (training AUC = 0.966; validation AUC = 0.935; test group: AUC = 0.943) outperformed the optimal models based on only radiomics or DLR features (training: AUC = 0.916 and 0.952; validation: AUC = 0.886 and 0.912; test group: AUC = 0.862 and 0.902). DATA CONCLUSION: Whether based on a single sequence or a combination of two sequences, radiomics and DLR models have achieved promising performance in assessing CDKN2A/B homozygous deletion status. However, the final model combining both deep learning and radiomics features from CE-T1WI and T2FLAIR outperformed the optimal radiomics or DLR model. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Astrocitoma , Aprendizaje Profundo , Humanos , Homocigoto , Isocitrato Deshidrogenasa/genética , Radiómica , Estudios Retrospectivos , Eliminación de Secuencia , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Imagen por Resonancia Magnética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética
11.
Eur Radiol ; 34(1): 391-399, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37553486

RESUMEN

OBJECTIVES: To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma. METHODS: Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed. RESULTS: The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively. CONCLUSIONS: The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. CLINICAL RELEVANCE STATEMENT: A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning. KEY POINTS: • CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Aprendizaje Profundo , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Homocigoto , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Mutación , Eliminación de Secuencia , Imagen por Resonancia Magnética/métodos , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Glioma/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética
12.
Small Methods ; : e2301081, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072584

RESUMEN

Mild aqueous Zn batteries (AZBs) generally suffer a low-voltage/energy dilemma, which compromises their competitiveness for large-scale energy storage. Pushing Zn anode potential downshift is an admissible yet underappreciated approach for high-voltage/energy AZBs. Herein, with a mild hybrid electrolyte containing in situ-derived diluted strongly-coordinated Zn2+ -cosolvent pairs, a considerable Zn anode potential downshift is initially achieved for high-voltage Zn-based hybrid batteries. The chosen butylpyridine cosolvent not only strongly coordinates Zn2+ ions but also acts as a hydrogen-bond end-capping agent to inhibit hydrogen evolution reaction (HER). The electrolyte environment with hetero-solvation-diluted strongly-coordinated Zn2+ -cosolvent pairs remarkably lowers Zn2+ activity, responsible for the Zn electrode potential downshift (-0.330 V vs Zn), confirming to modified Nernst law (ΔE = R T n F $\frac{{RT}}{{nF}}$ ln[a(Zn2 + )/a(coordinated solvent)]). With the diluted Zn2+ -containing hybrid electrolyte, the Zn//Zn symmetric cell in the hybrid electrolyte shows a long lifespan over 1270 h at a stripping/plating capacity of 0.4 mA h cm-2 . Compared with in common hybrid electrolytes, the as-assembled Zn-MnO2 hybrid battery delivers a ca. 0.278 V enhanced voltage plateau (1.57 V) and a long-term cyclability of over 736 cycles. This work opens a new avenue toward Zn anode potential downshift for high-voltage AZBs, which can extend to other mild metal batteries.

13.
ACS Nano ; 17(22): 23207-23219, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963092

RESUMEN

Although the meticulous design of functional diversity within the polymer interfacial layer holds paramount significance in mitigating the challenges associated with hydrogen evolution reactions and dendrite growth in zinc anodes, this pursuit remains a formidable task. Here, a large-scale producible zinc-enriched/water-lean polymer interfacial layer, derived from carboxymethyl chitosan (CCS), is constructed on zinc anodes by integration of electrodeposition and a targeted complexation strategy for highly reversible Zn plating/stripping chemistry. Zinc ions-induced crowding effect between CCS skeleton creates a strong hydrogen bonding environment and squeezes the moving space for water/anion counterparts, therefore greatly reducing the number of active water molecules and alleviating cathodic I3- attack. Moreover, the as-constructed Zn2+-enriched layer substantially facilitate rapid Zn2+ migration through the NH2-Zn2+-NH2 binding/dissociation mode of CCS molecule chain. Consequently, the large-format Zn symmetry cell (9 cm2) with a Zn-CCS electrode demonstrates excellent cycling stability over 1100 h without bulging. When coupled with an I2 cathode, the assembled Zn-I2 multilayer pouch cell displays an exceptionally high capacity of 140 mAh and superior long-term cycle performance of 400 cycles. This work provides a universal strategy to prepare large-scale production and high-performance polymer crowding layer for metal anode-based battery, analogous outcomes were veritably observed on other metals (Al, Cu, Sn).

14.
RSC Adv ; 13(37): 25920-25929, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37655360

RESUMEN

Superhydrophobic porous materials exhibit remarkable stability and exceptional efficacy in combating marine oil spills and containing oily water discharges. This work employed the multi-template high internal phase emulsion method to fabricate a multi-template porous superhydrophobic foam (MTPSF). The materials were characterized through SEM, IR spectroscopy, contact angle measurement, and an electronic universal testing machine. Moreover, the materials' oil-water separation capability, reusability, and compressibility were thoroughly evaluated. The obtained results demonstrate that the material displays a water contact angle of 143° and an oil contact angle of approximately 0°, thus exhibiting superhydrophobic and superoleophilic properties. Consequently, it effectively facilitates the separation of oil slicks and heavy oil underwater. Furthermore, the MTPSF conforms to the second kinetic and Webber-Morris models concerning the oil absorption process. MTPSF exhibits an outstanding oil absorption capacity, ranging from 39.40 to 102.32 g g-1, while showcasing reliable reusability, high recovery efficiency, and excellent compressibility of up to 55%. The above exceptional attributes render the MTPSF highly suitable for oil-water separation applications.

15.
Angew Chem Int Ed Engl ; 62(44): e202311032, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37691598

RESUMEN

The artificial solid electrolyte interphase (SEI) plays a pivotal role in Zn anode stabilization but its long-term effectiveness at high rates is still challenged. Herein, to achieve superior long-life and high-rate Zn anode, an exquisite electrolyte additive, lithium bis(oxalate)borate (LiBOB), is proposed to in situ derive a highly Zn2+ -conductive SEI and to dynamically patrol its cycling-initiated defects. Profiting from the as-constructed real-time, automatic SEI repairing mechanism, the Zn anode can be cycled with distinct reversibility over 1800 h at an ultrahigh current density of 50 mA cm-2 , presenting a record-high cumulative capacity up to 45 Ah cm-2 . The superiority of the formulated electrolyte is further demonstrated in the Zn||MnO2 and Zn||NaV3 O8 full batteries, even when tested under harsh conditions (limited Zn supply (N/P≈3), 2500 cycles). This work brings inspiration for developing fast-charging Zn batteries toward grid-scale storage of renewable energy sources.

16.
Chem Commun (Camb) ; 59(73): 10980-10983, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37615034

RESUMEN

A facile, universal surface engineering strategy is proposed to address the volume expansion and slow kinetic issues encountered by SiOx/C anodes. A B-/F-enriched buffering interphase is introduced onto SiOx/C by thermal treatment of pre-adsorbed lithium salts at 400 °C. The as-prepared anode integrates both high-rate performance and long-term cycling durability.

17.
Front Immunol ; 14: 894853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122693

RESUMEN

Introduction: Glioblastoma is a malignant brain tumor with poor prognosis. Lactate is the main product of tumor cells, and its secretion may relate to immunocytes' activation. However, its role in glioblastoma is poorly understood. Methods: This work performed bulk RNA-seq analysis and single cell RNA-seq analysis to explore the role of lactate in glioblastoma progression. Over 1400 glioblastoma samples were grouped into different clusters according to their expression and the results were validated with our own data, the xiangya cohort. Immunocytes infiltration analysis, immunogram and the map of immune checkpoint genes' expression were applied to analyze the potential connection between the lactate level with tumor immune microenvironment. Furthermore, machine learning algorithms and cell-cell interaction algorithm were introduced to reveal the connection of tumor cells with immunocytes. By co-culturing CD8 T cells with tumor cells, and performing immunohistochemistry on Xiangya cohort samples further validated results from previous analysis. Discussion: In this work, lactate is proved that contributes to glioblastoma immune suppressive microenvironment. High level of lactate in tumor microenvironment can affect CD8 T cells' migration and infiltration ratio in glioblastoma. To step further, potential compounds that targets to samples from different groups were also predicted for future exploration.


Asunto(s)
Glioblastoma , Tolerancia Inmunológica , Ácido Láctico , Linfocitos Infiltrantes de Tumor , Microambiente Tumoral , Ácido Láctico/metabolismo , Glioblastoma/inmunología , Glioblastoma/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Humanos , Microglía/inmunología , Microglía/metabolismo
18.
Angew Chem Int Ed Engl ; 62(16): e202217945, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36789448

RESUMEN

Aqueous rechargeable Mg batteries (ARMBs) usually fail from severe anode passivation, alternatively, executing quasi-underpotential Mg plating/stripping chemistry (UPMC) on a proper heterogeneous metal substrate is a crucial remedy. Herein, a stable UPMC on Zn substrate is initially achieved in new hydrated eutectic electrolytes (HEEs), delivering an ultralow UPMC overpotential and high energy/voltage plateau of ARMBs. The unique eutectic property remarkably expands the lower limit of electrochemical stability window (ESW) of HEEs and undermines the competition between hydrogen evolution/corrosion reactions and UPMC, enabling a reversible UPMC. The UPMC is carefully revealed by multiple characterizations, which shows a low overpotential of 50 mV at 0.1 mA cm-2 over 550 h. With sulfonic acid-doped polyaniline (SPANI) cathodes, UPMC-based full cells show high energy/power densities of 168.6 Wh kg-1 /2.1 kWh kg-1 and voltage plateau of 1.3 V, far overwhelming conventional aqueous systems.

19.
Angew Chem Int Ed Engl ; 62(5): e202215385, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36437231

RESUMEN

The anode-cathode interplay is an important but rarely considered factor that initiates the degradation of aqueous zinc ion batteries (AZIBs). Herein, to address the limited cyclability issue of V-based AZIBs, Al2 (SO4 )3 is proposed as decent electrolyte additive to manipulate OH- -mediated cross-communication between Zn anode and NaV3 O8 ⋅ 1.5H2 O (NVO) cathode. The hydrolysis of Al3+ creates a pH≈0.9 strong acidic environment, which unexpectedly prolongs the anode lifespan from 200 to 1000 h. Such impressive improvement is assigned to the alleviation of interfacial OH- accumulation by Al3+ adsorption and solid electrolyte interphase formation. Accordingly, the strongly acidified electrolyte, associated with the sedated crossover of anodic OH- toward NVO, remarkably mitigate its undesired dissolution and phase transition. The interrupted OH- -mediated communication between the two electrodes endows Zn||NVO batteries with superb cycling stability, at both low and high scan rates.

20.
Eur Radiol ; 33(2): 872-883, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35984514

RESUMEN

OBJECTIVES: To develop a clinical radiomics-integrated model based on 18 F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET) and multi-modal MRI for predicting alpha thalassemia/mental retardation X-linked (ATRX) mutation status of IDH-mutant lower-grade gliomas (LGGs). METHODS: One hundred and two patients (47 ATRX mutant-type, 55 ATRX wild-type) diagnosed with IDH-mutant LGGs (CNS WHO grades 1 and 2) were retrospectively enrolled. A total of 5540 radiomics features were extracted from structural MR (sMR) images (contrast-enhanced T1-weighted imaging, CE-T1WI; T2-weighted imaging, and T2WI), functional MR (fMR) images (apparent diffusion coefficient, ADC; cerebral blood volume, CBV), and metabolic PET images ([18F]FDG PET). The random forest algorithm was used to establish a clinical radiomics-integrated model, integrating the optimal multi-modal radiomics model with three clinical parameters. The predictive effectiveness of the models was evaluated by receiver operating characteristic (ROC) and decision curve analysis (DCA). RESULTS: The optimal multi-modal model incorporated sMR (CE-T1WI), fMR (ADC), and metabolic ([18F]FDG) images ([18F]FDG PET+ADC+ CE-T1WI) with the area under curves (AUCs) in the training and test groups of 0.971 and 0.962, respectively. The clinical radiomics-integrated model, incorporating [18F]FDG PET+ADC+CE-T1WI, three clinical parameters (KPS, SFSD, and ATGR), showed the best predictive effectiveness in the training and test groups (0.987 and 0.975, respectively). CONCLUSIONS: The clinical radiomics-integrated model with metabolic, structural, and functional information based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting the ATRX mutation status of IDH-mutant LGGs. KEY POINTS: • The clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting ATRX mutation status in LGGs. • The study investigated the value of multicenter clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI in LGGs regarding ATRX mutation status prediction. • The integrated model provided structural, functional, and metabolic information simultaneously and demonstrated with satisfactory calibration and discrimination in the training and test groups (0.987 and 0.975, respectively).


Asunto(s)
Neoplasias Encefálicas , Glioma , Discapacidad Intelectual , Talasemia alfa , Humanos , Fluorodesoxiglucosa F18 , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/metabolismo , Imagen por Resonancia Magnética/métodos , Mutación , Proteína Nuclear Ligada al Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA