Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 135(3): 777-784, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34779894

RESUMEN

KEY MESSAGE: A major quantitative trait locus (QTL) modulating soybean (Glycine max) branch angle was identified by linkage analysis using two bi-parental mapping populations with and without pedigree from wild soybean (Glycine soja). Soybean branch angle is a critical architectural trait that affects many other traits of agronomic importance associated with the plant's productivity and grain yield and is thus a vital consideration in soybean breeding. However, the genetic basis for modulating this important trait in soybean and many other crops remain unknown. Previously, we developed a recombinant inbred line (RIL) population derived from a cross between a domesticated soybean (Glycine max) variety, Williams 82, and a wild soybean (Glycine soja) accession, PI 479,752, and observed drastic variation in plant architecture including branch angle among individual RILs. In this study, one of the RILs possessing extremely wide branch angle (WBA) was crossed with an elite soybean cultivar (LD00-3309) possessing narrow branch angle (NBA) to produce an F2 population composed of 147 plants and F2-derived F3 families for inheritance analysis and QTL mapping. We found that branch angle is controlled by a major QTL located on chromosome 19, designated qGmBa1 and that WBA-derived from the wild soybean accession-is dominant over NBA. This locus was also detected as a major one underlying branch angle by QTL mapping using a subset of the soybean nested association mapping (SoyNAM) population composed of 140 RILs, which were derived from a cross between a landrace, PI 437169B, possessing WBA and an elite variety, IA3023, possessing NBA. Molecular markers located in the QTL region defined by both mapping populations can be used for marker-assisted selection of branch angle in soybean breeding.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Ligamiento Genético , Humanos , Fitomejoramiento , Glycine max/genética
2.
Theor Appl Genet ; 134(7): 1977-1987, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33721030

RESUMEN

KEY MESSAGE: Two soybean QDRL were identified with additive interaction to P. sansomeana isolate MPS17-22. Further analyses uncovered four interaction patterns between the two QDRL and seven additional P. sansomeana isolates. Phytophthora sansomeana is a recently recognized species that contributes to root rot in soybean. Previous studies indicated that P. sansomeana is widely distributed among soybean growing regions and has a much wider host range than P. sojae, a well-known pathogen of soybean. Unlike P. sojae, no known disease resistance genes have been documented that can effectively control P. sansomeana. Therefore, it is important to identify resistance that can be quickly integrated into future soybean varieties. E13901 is an improved soybean line that confers partial resistance to P. sansomeana. A mapping population of 228 F4:5 families was developed from a cross between E13901 and a susceptible improved soybean variety E13390. Using a composite interval mapping method, two quantitative disease resistance loci (QDRL) were identified on Chromosomes 5 (designated qPsan5.1) and 16 (designated qPsan16.1), respectively. qPsan5.1 was mapped at 54.71 cM between Gm05_32565157_T_C and Gm05_32327497_T_C. qPsan5.1 was contributed by E13390 and explained about 6% of the disease resistance variation. qPsan16.1 was located at 39.01 cM between Gm16_35700223_G_T and Gm16_35933600/ Gm16_35816475. qPsan16.1 was from E13901 and could explain 5.5% of partial disease resistance. Further analysis indicated an additive interaction of qPsan5.1 and qPsan16.1 against P. sansomeana isolate MPS17-22. Marker assisted resistance spectrum analysis and progeny tests verified the two QDRL and their interaction patterns with other P. sansomeana isolates. Both QDRL can be quickly integrated into soybean varieties using marker assisted selection.


Asunto(s)
Resistencia a la Enfermedad/genética , Glycine max/genética , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Glycine max/microbiología
3.
Mol Genet Genomics ; 295(3): 661-673, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32008123

RESUMEN

Drought stress, which is increasing with climate change, is a serious threat to agricultural sustainability worldwide. Seed germination is an essential growth phase that ensures the successful establishment and productivity of soybean, which can lose substantial productivity in soils with water deficits. However, only limited genetic information is available about how germinating soybean seeds may exert drought tolerance. In this study, we examined the germinating seed drought-tolerance phenotypes and genotypes of a panel of 259 released Chinese soybean cultivars panel. Based on 4616 Single-Nucleotide Polymorphisms (SNPs), we conducted a mixed-linear model GWAS that identified a total of 15 SNPs associated with at least one drought-tolerance index. Notably, three of these SNPs were commonly associated with two drought-tolerance indices. Two of these SNPs are positioned upstream of genes, and 11 of them are located in or near regions where QTLs have been previously mapped by linkage analysis, five of which are drought-related. The SNPs detected in this study can both drive hypothesis-driven research to deepen our understanding of genetic basis of soybean drought tolerance at the germination stage and provide useful genetic resources that can facilitate the selection of drought stress traits via genomic-assisted selection.


Asunto(s)
Sequías , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Germinación , Glycine max/genética , Polimorfismo de Nucleótido Simple , Semillas/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Estrés Fisiológico
4.
Phytopathology ; 110(4): 907-915, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31821112

RESUMEN

Sudden death syndrome (SDS) foliar symptoms consist of foliar chlorosis, foliar necrosis, leaf marginal curling, and premature defoliation, but resistance screening has been evaluated mostly based on the overall SDS foliar severity rather than on a specific foliar symptom. This study generated an F2 population derived from crossing the susceptible variety Sloan and the resistant germplasm line PI 243518, which exhibits resistance to both foliar chlorosis and necrosis. A total of 400 F2 lines were evaluated for foliar chlorosis, foliar necrosis, and overall SDS foliar symptoms, separately. Genotyping-by-sequencing was applied to obtain single nucleotide polymorphisms (SNPs) in the F2 population, and linkage mapping using 135 F2 lines with 969 high-quality SNPs identified a locus on chromosome 13 for foliar necrosis and SDS foliar symptoms. The locus partially overlaps with loci previously reported for SDS on chromosome 13, which is the third time the region from 15.98 to 21.00 Mbp has been reproduced independently and therefore qualifies this locus for a new nomenclature proposed as Rfv13-02. In summary, this study generated a new biparental population that enables not only the discovery of a locus for foliar necrosis and SDS foliar symptoms on chromosome 13 but also the potential for advanced exploration of SDS foliar resistance derived from the germplasm line PI 243518.


Asunto(s)
Fusarium , Glycine max , Mapeo Cromosómico , Muerte Súbita , Resistencia a la Enfermedad , Humanos , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple
6.
Theor Appl Genet ; 132(2): 501-513, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30446796

RESUMEN

KEY MESSAGE: Different loci associated with root resistance to F. virguliforme colonization and foliar resistance to phytotoxin damage in soybean. Use of resistant cultivars is the most efficacious approach to manage soybean sudden death syndrome (SDS), caused by Fusarium virguliforme. The objectives of this study were to (1) map the loci associated with root and foliar resistance to F. virguliforme infection and (2) decipher the relationships between root infection, foliar damage, and plot yield. A mapping population consisting of 153 F4-derived recombinant inbred lines from the cross U01-390489 × E07080 was genotyped by SoySNP6 K BeadChip assay. Both foliar damage and F. virguliforme colonization in roots were investigated in the field, and a weak positive correlation was identified between them. Foliar damage had a stronger negative correlation with plot yield than F. virguliforme colonization. Twelve loci associated with foliar damage were identified, and four of them were associated with multiple traits across environments. In contrast, only one locus associated with root resistance to F. virguliforme colonization was identified and mapped on Chromosome 18. It colocalized with the locus associated with foliar damage in the same environment. The locus on Chromosome 6, qSDS6-2, and the locus on Chromosome 18, qSDS18-1, were associated with resistance to SDS phytotoxins and resistance to F. virguliforme colonization of roots, respectively. Both loci affected plot yield. Foliar damage-related traits, especially disease index, are valuable indicators for SDS resistance breeding because of consistency of the identified loci and their stronger correlation with plot yield. The information provided by this study will facilitate marker-assisted selection to improve SDS resistance in soybean.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Glycine max/genética , Enfermedades de las Plantas/genética , Fusarium/patogenicidad , Ligamiento Genético , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta , Raíces de Plantas , Sitios de Carácter Cuantitativo , Glycine max/microbiología
7.
G3 (Bethesda) ; 8(10): 3155-3161, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30111618

RESUMEN

Pythium root rot is one of the significant diseases of soybean (Glycine max (L.) Merr.) in the United States. The causal agent of the disease is a soil-borne oomycete pathogen Pythium irregulare, the most prevalent and aggressive species of Pythium in North Central United States. However, few studies have been conducted in soybean for the identification of quantitative trait loci (QTL) for tolerance to P. irregulare In this study, two recombinant inbred line (RIL) populations (designated as POP1 and POP2) were challenged with P. irregulare (isolate CMISO2-5-14) in a greenhouse assay. POP1 and POP2 were derived from 'E09014' × 'E05226-T' and 'E05226-T' × 'E09088', and contained 113 and 79 lines, respectively. Parental tests indicated that 'E05226-T' and 'E09014' were more tolerant than 'E09088', while 'E09088' was highly susceptible to the pathogen. The disease indices, root weight of inoculation (RWI) and ratio of root weight (RRW) of both populations showed near normal distributions, with transgressive segregation, suggesting the involvement of multiple QTL from both parents contributed to the tolerance. All the lines were genotyped using Illumina Infinium BARCSoySNP6K iSelect BeadChip and yielded 1373 and 1384 polymorphic markers for POP1 and POP2, respectively. Notably, despite high density, polymorphic markers coverage was incomplete in some genomic regions. As such, 28 and 37 linkage groups were obtained in POP1 and POP2, respectively corresponding to the 20 soybean chromosomes. Using RRW, one QTL was identified in POP1 on Chromosome 20 that explained 12.7-13.3% of phenotypic variation. The desirable allele of this QTL was from 'E05226-T'. Another QTL was found in POP2 on Chromosome 11. It explained 15.4% of the phenotypic variation and the desirable allele was from 'E09088'. However, no QTL were identified using RWI in either population. These results supported that RRW was more suitable to be used to evaluate P. irregulare tolerance in soybean.


Asunto(s)
Mapeo Cromosómico , Glycine max/genética , Glycine max/parasitología , Interacciones Huésped-Parásitos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Pythium , Sitios de Carácter Cuantitativo , Resistencia a la Enfermedad/genética , Ligamiento Genético , Polimorfismo de Nucleótido Simple
8.
Front Plant Sci ; 9: 610, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868067

RESUMEN

Soybean was domesticated about 5,000 to 6,000 years ago in China. Although genotyping technologies such as genotyping by sequencing (GBS) and high-density array are available, it is convenient and economical to genotype cultivars or populations using medium-density SNP array in genetic study as well as in molecular breeding. In this study, 235 cultivars, collected from China, Japan, USA, Canada and some other countries, were genotyped using SoySNP8k iSelect BeadChip with 7,189 single nucleotide polymorphisms (SNPs). In total, 4,471 polymorphic SNP markers were used to analyze population structure and perform genome-wide association study (GWAS). The most likely K value was 7, indicating this population can be divided into 7 subpopulations, which is well in accordance with the geographic origins of cultivars or accession studied. The LD decay rate was estimated at 184 kb, where r2 dropped to half of its maximum value (0.205). GWAS using FarmCPU detected a stable quantitative trait nucleotide (QTN) for hilum color and seed color, which is consistent with the known loci or genes. Although no universal QTNs for flowering time and maturity were identified across all environments, a total of 30 consistent QTNs were detected for flowering time (R1) or maturity (R7 and R8) on 16 chromosomes, most of them were corresponding to known E1 to E4 genes or QTL region reported in SoyBase (soybase.org). Of 16 consistent QTNs for protein and oil contents, 11 QTNs were detected having antagonistic effects on protein and oil content, while 4 QTNs soly for oil content, and one QTN soly for protein content. The information gained in this study demonstrated that the usefulness of the medium-density SNP array in genotyping for genetic study and molecular breeding.

9.
Theor Appl Genet ; 131(8): 1729-1740, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29766218

RESUMEN

KEY MESSAGE: Two interactive quantitative trait loci (QTLs) controlled the field resistance to sudden death syndrome (SDS) in soybean. The interaction between them was confirmed. Sudden death syndrome (SDS), caused by Fusarium virguliforme, is a major disease of soybean [Glycine max (L.) Merr.] in the United States. Breeding for soybean resistance to SDS is the most cost-effective method to manage the disease. The objective of this study was to identify and characterize quantitative trait loci (QTLs) underlying field resistance to SDS in a recombinant inbred line population from the cross GD2422 × LD01-5907. This population was genotyped with 1786 polymorphic single nucleotide polymorphisms (SNPs) using SoySNP6 K iSelect BeadChip and evaluated for SDS resistance in a naturally infested field. Four SDS resistance QTLs were mapped on Chromosomes 4, 8, 12 and 18. The resistant parent, LD01-5907, contributed the resistance alleles for the QTLs on Chromosomes 8 and 18 (qSDS-8 and qSDS-18), while the other parent, GD2422, provided the resistance alleles for the QTLs on Chromosomes 4 and 12 (qSDS-4 and qSDS-12). The minor QTL on Chromosome 12 (qSDS-12) is novel. The QTL on Chromosomes 8 and 18 (qSDS-8 and qSDS-18) overlapped with two soybean cyst nematode resistance-related loci, Rhg4 and Rhg1, respectively. A significant interaction between qSDS-8 and qSDS-18 was detected by disease incidence. Individual effects together with the interaction effect explained around 70% of the phenotypic variance. The epistatic interaction of qSDS-8 and qSDS-18 was confirmed by the field performance across multiple years. Furthermore, the resistance alleles at qSDS-8 and qSDS-18 were demonstrated to be recessive. The SNP markers linked to these QTLs will be useful for marker-assisted breeding to enhance the SDS resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Epistasis Genética , Glycine max/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico , Fusarium/patogenicidad , Ligamiento Genético , Genotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Glycine max/microbiología
10.
Plant Biotechnol J ; 16(11): 1825-1835, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29528555

RESUMEN

White mould of soya bean, caused by Sclerotinia sclerotiorum (Lib.) de Bary, is a necrotrophic fungus capable of infecting a wide range of plants. To dissect the genetic architecture of resistance to white mould, a high-density customized single nucleotide polymorphism (SNP) array (52 041 SNPs) was used to genotype two soya bean diversity panels. Combined with resistance variation data observed in the field and greenhouse environments, genome-wide association studies (GWASs) were conducted to identify quantitative trait loci (QTL) controlling resistance against white mould. Results showed that 16 and 11 loci were found significantly associated with resistance in field and greenhouse, respectively. Of these, eight loci localized to previously mapped QTL intervals and one locus had significant associations with resistance across both environments. The expression level changes in genes located in GWAS-identified loci were assessed between partially resistant and susceptible genotypes through a RNA-seq analysis of the stem tissue collected at various time points after inoculation. A set of genes with diverse biological functionalities were identified as strong candidates underlying white mould resistance. Moreover, we found that genomic prediction models outperformed predictions based on significant SNPs. Prediction accuracies ranged from 0.48 to 0.64 for disease index measured in field experiments. The integrative methods, including GWAS, RNA-seq and genomic selection (GS), applied in this study facilitated the identification of causal variants, enhanced our understanding of mechanisms of white mould resistance and provided valuable information regarding breeding for disease resistance through genomic selection in soya bean.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Glycine max/genética , Enfermedades de las Plantas/microbiología , Genes de Plantas/genética , Marcadores Genéticos/genética , Desequilibrio de Ligamiento/genética , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Glycine max/inmunología , Glycine max/microbiología
11.
Front Plant Sci ; 8: 2014, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250088

RESUMEN

Soybean is one of the most important economic crops for both China and the United States (US). The exchange of germplasm between these two countries has long been active. In order to investigate genetic relationships between Chinese and US soybean germplasm, 277 Chinese soybean accessions and 300 US soybean accessions from geographically diverse regions were analyzed using 5,361 SNP markers. The genetic diversity and the polymorphism information content (PIC) of the Chinese accessions was higher than that of the US accessions. Population structure analysis, principal component analysis, and cluster analysis all showed that the genetic basis of Chinese soybeans is distinct from that of the USA. The groupings observed in clustering analysis reflected the geographical origins of the accessions; this conclusion was validated with both genetic distance analysis and relative kinship analysis. FST-based and EigenGWAS statistical analysis revealed high genetic variation between the two subpopulations. Analysis of the 10 loci with the strongest selection signals showed that many loci were located in chromosome regions that have previously been identified as quantitative trait loci (QTL) associated with environmental-adaptation-related and yield-related traits. The pattern of diversity among the American and Chinese accessions should help breeders to select appropriate parental accessions to enhance the performance of future soybean cultivars.

12.
Theor Appl Genet ; 130(12): 2601-2615, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28887657

RESUMEN

KEY MESSAGE: Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified. The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS-LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.


Asunto(s)
Áfidos , Mapeo Cromosómico , Genes de Plantas , Glycine max/genética , Animales , ADN de Plantas/genética , Marcadores Genéticos , Herbivoria , Polimorfismo de Nucleótido Simple
13.
BMC Genomics ; 18(1): 415, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28549456

RESUMEN

BACKGROUND: Soybean (Glycine max (L.) Merr.) is a short day plant. Its flowering and maturity time are controlled by genetic and environmental factors, as well the interaction between the two factors. Previous studies have shown that both genetic and environmental factors, mainly photoperiod and temperature, control flowering time of soybean. Additionally, these studies have reported gene × gene and gene × environment interactions on flowering time. However, the effects of quantitative trait loci (QTL) in response to photoperiod and temperature have not been well evaluated. The objectives of the current study were to identify the effects of loci associated with flowering time under different photo-thermal conditions and to understand the effects of interaction between loci and environment on soybean flowering. METHODS: Different photoperiod and temperature combinations were obtained by adjusting sowing dates (spring sowing and summer sowing) or day-length (12 h, 16 h). Association mapping was performed on 91 soybean cultivars from different maturity groups (MG000-VIII) using 172 SSR markers and 5107 SNPs from the Illumina SoySNP6K iSelectBeadChip. The effects of the interaction between QTL and environments on flowering time were also analysed using the QTXNetwork. RESULTS: Large-effect loci were detected on Gm 11, Gm 16 and Gm 20 as in previous reports. Most loci associated with flowering time are sensitive to photo-thermal conditions. Number of loci associated with flowering time was more under the long day (LD) than under the short day (SD) condition. The variation of flowering time among the soybean cultivars mostly resulted from the epistasis × environment and additive × environment interactions. Among the three candidate loci, i.e. Gm04_4497001 (near GmCOL3a), Gm16_30766209 (near GmFT2a and GmFT2b) and Gm19_47514601 (E3 or GmPhyA3), the Gm04_4497001 may be the key locus interacting with other loci for controlling soybean flowering time. CONCLUSION: The effects of loci associated with the flowering time of soybean were dependent upon the photo-thermal conditions. This study facilitates the understanding of the genetic mechanism of soybean flowering and molecular breeding for the improvement of soybean adaptability to specific and/or broad regions.


Asunto(s)
Mapeo Cromosómico , Flores/crecimiento & desarrollo , Interacción Gen-Ambiente , Glycine max/crecimiento & desarrollo , Glycine max/genética , Fotoperiodo , Temperatura , Genotipo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
14.
Plant Sci ; 256: 72-86, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28167041

RESUMEN

By using the soybean founder parent Tokachi nagaha and its 137 derived cultivars as materials, a genome-wide association analysis was performed to identify the single nucleotide polymorphisms (SNPs) underlying soybean yield and quality related traits at two planting densities. Results of ANOVA showed that genotype, environment, and genotype by environment interaction effects were all significant for each trait. The Tokachi nagaha-derived soybean population could be divided into two subpopulations based on molecular data, and accessions in each subpopulation were almost all from the same Chinese province. Relatedness was detected between pair-wise accessions within the population. Linkage disequilibrium was obvious and the level of intra-chromosome linkage disequilibrium was about 8370kb. A total of 40 SNPs with significant signal were detected and distributed across 18 chromosomes. Some SNP markers were located in or near regions where QTLs have been previously mapped by linkage analysis. Nineteen SNPs were identified both in low- and high- density planting treatments, indicating those loci were common and sTable Sixteen SNPs were co-associated with two or more different traits, suggesting that some of the QTLs/genes underlying those identified SNPs were likely to be pleiotropic.


Asunto(s)
Genes de Plantas , Ligamiento Genético , Pleiotropía Genética , Genotipo , Glycine max/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Agricultura , Análisis de Varianza , China , Mapeo Cromosómico , Cromosomas de las Plantas , Productos Agrícolas/genética , Ambiente , Estudios de Asociación Genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Glycine max/crecimiento & desarrollo , Especificidad de la Especie
15.
Mol Breed ; 36: 113, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27524935

RESUMEN

Genomic selection is a promising molecular breeding strategy enhancing genetic gain per unit time. The objectives of our study were to (1) explore the prediction accuracy of genomic selection for plant height and yield per plant in soybean [Glycine max (L.) Merr.], (2) discuss the relationship between prediction accuracy and numbers of markers, and (3) evaluate the effect of marker preselection based on different methods on the prediction accuracy. Our study is based on a population of 235 soybean varieties which were evaluated for plant height and yield per plant at multiple locations and genotyped by 5361 single nucleotide polymorphism markers. We applied ridge regression best linear unbiased prediction coupled with fivefold cross-validations and evaluated three strategies of marker preselection. For plant height, marker density and marker preselection procedure impacted prediction accuracy only marginally. In contrast, for grain yield, prediction accuracy based on markers selected with a haplotype block analyses-based approach increased by approximately 4 % compared with random or equidistant marker sampling. Thus, applying marker preselection based on haplotype blocks is an interesting option for a cost-efficient implementation of genomic selection for grain yield in soybean breeding.

16.
PLoS One ; 11(7): e0158602, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27367048

RESUMEN

The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS) was exploited to detect the quantitative trait loci (QTL) for number of days to flowering (ETF), number of days from flowering to maturity (FTM), and number of days to maturity (ETM) using 4032 single nucleotide polymorphism (SNP) markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max/crecimiento & desarrollo , Glycine max/genética , Fenotipo , Cruzamiento , Flores/genética , Flores/crecimiento & desarrollo , Variación Genética , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo/genética
17.
Theor Appl Genet ; 129(3): 517-34, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26704418

RESUMEN

KEY MESSAGE: The Rpp6 locus of PI 567102B was mapped from 5,953,237 to 5,998,461 bp (chromosome 18); and a novel allele at the Rpp6 locus or tightly linked gene Rpp[PI567068A] of PI 567068A was mapped from 5,998,461 to 6,160,481 bp. Soybean rust (SBR), caused by the obligate, fungal pathogen Phakopsora pachyrhizi is an economic threat to soybean production, especially in the Americas. Host plant resistance is an important management strategy for SBR. The most recently described resistance to P. pachyrhizi (Rpp) gene is Rpp6 contributed by PI 567102B. Rpp6 was previously mapped to an interval of over four million base pairs on chromosome 18. PI 567068A was recently demonstrated to possess a resistance gene near the Rpp6 locus, yet PI 567068A gave a differential isolate reaction to several international isolates of P. pachyrhizi. The goals of this research were to fine map the Rpp6 locus of PI 567102B and PI 567068A and determine whether or not PI 567068A harbors a novel Rpp6 allele or another allele at a tightly linked resistance locus. Linkage mapping in this study mapped Rpp6 from 5,953,237 to 5,998,461 bp (LOD score of 58.3) and the resistance from PI 567068A from 5,998,461 to 6,160,481 bp (LOD score of 4.4) (Wm82.a1 genome sequence). QTL peaks were 139,033 bp apart from one another as determined by the most significant SNPs in QTL mapping. The results of haplotype analysis demonstrated that PI 567102B and PI 567068A share the same haplotype in the resistance locus containing both Rpp alleles, which was designated as the Rpp6/Rpp[PI567068A] haplotype. The Rpp6/Rpp[PI567068A] haplotype identified in this study can be used as a tool to rapidly screen other genotypes that possess a Rpp gene(s) and detect resistance at the Rpp6 locus in diverse germplasm.


Asunto(s)
Resistencia a la Enfermedad/genética , Glycine max/genética , Phakopsora pachyrhizi/patogenicidad , Enfermedades de las Plantas/genética , Alelos , Mapeo Cromosómico , Genes de Plantas , Genotipo , Haplotipos , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Glycine max/microbiología
18.
BMC Genomics ; 16: 671, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26334313

RESUMEN

BACKGROUND: Crop improvement always involves selection of specific alleles at genes controlling traits of agronomic importance, likely resulting in detectable signatures of selection within the genome of modern soybean (Glycine max L. Merr.). The identification of these signatures of selection is meaningful from the perspective of evolutionary biology and for uncovering the genetic architecture of agronomic traits. RESULTS: To this end, two populations of soybean, consisting of 342 landraces and 1062 improved lines, were genotyped with the SoySNP50K Illumina BeadChip containing 52,041 single nucleotide polymorphisms (SNPs), and systematically phenotyped for 9 agronomic traits. A cross-population composite likelihood ratio (XP-CLR) method was used to screen the signals of selective sweeps. A total of 125 candidate selection regions were identified, many of which harbored genes potentially involved in crop improvement. To further investigate whether these candidate regions were in fact enriched for genes affected by selection, genome-wide association studies (GWAS) were conducted on 7 selection traits targeted in soybean breeding (grain yield, plant height, lodging, maturity date, seed coat color, seed protein and oil content) and 2 non-selection traits (pubescence and flower color). Major genomic regions associated with selection traits overlapped with candidate selection regions, whereas no overlap of this kind occurred for the non-selection traits, suggesting that the selection sweeps identified are associated with traits of agronomic importance. Multiple novel loci and refined map locations of known loci related to these traits were also identified. CONCLUSIONS: These findings illustrate that comparative genomic analyses, especially when combined with GWAS, are a promising approach to dissect the genetic architecture of complex traits.


Asunto(s)
Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Genómica , Glycine max/genética , Selección Genética , Sitios Genéticos , Variación Genética , Genética de Población , Genoma de Planta , Desequilibrio de Ligamiento/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados
19.
BMC Genomics ; 15: 809, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25249039

RESUMEN

BACKGROUND: Sudden death syndrome (SDS) is a serious threat to soybean production that can be managed with host plant resistance. To dissect the genetic architecture of quantitative resistance to the disease in soybean, two independent association panels of elite soybean cultivars, consisting of 392 and 300 unique accessions, respectively, were evaluated for SDS resistance in multiple environments and years. The two association panels were genotyped with 52,041 and 5,361 single nucleotide polymorphisms (SNPs), respectively. Genome-wide association mapping was carried out using a mixed linear model that accounted for population structure and cryptic relatedness. RESULT: A total of 20 loci underlying SDS resistance were identified in the two independent studies, including 7 loci localized in previously mapped QTL intervals and 13 novel loci. One strong peak of association on chromosome 18, associated with all disease assessment criteria across the two panels, spanned a physical region of 1.2 Mb around a previously cloned SDS resistance gene (GmRLK18-1) in locus Rfs2. An additional variant independently associated with SDS resistance was also found in this genomic region. Other peaks were within, or close to, sequences annotated as homologous to genes previously shown to be involved in plant disease resistance. The identified loci explained an average of 54.5% of the phenotypic variance measured by different disease assessment criteria. CONCLUSIONS: This study identified multiple novel loci and refined the map locations of known loci related to SDS resistance. These insights into the genetic basis of SDS resistance can now be used to further enhance durable resistance to SDS in soybean. Additionally, the associations identified here provide a basis for further efforts to pinpoint causal variants and to clarify how the implicated genes affect SDS resistance in soybean.


Asunto(s)
Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Glycine max/genética , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Fusarium/fisiología , Genes de Plantas/genética , Marcadores Genéticos/genética , Variación Genética , Fenotipo , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Glycine max/inmunología
20.
Theor Appl Genet ; 126(2): 425-33, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23052024

RESUMEN

Water soluble protein content (SPC) plays an important role in the functional efficacy of protein in food products. Therefore, for the identification of quantitative trait loci (QTL) associated with SPC, 212 F(2:9) lines of the recombinant inbred line (RIL) population derived from the cross of ZDD09454 × Yudou12 were grown along with the parents, in six different environments (location × year) to determine inheritance and map solubility-related genes. A linkage map comprising of 301 SSR markers covering 3,576.81 cM was constructed in the RIL population. Seed SPC was quantified with a macro-Kjeldahl procedure in samples collected over multiple years from three locations (Nantong in 2007 and 2008, Zhengzhou in 2007 and 2008, and Xinxiang in 2008 and 2009). SPC demonstrated transgressive segregation, indicating a complementary genetic structure between the parents. Eleven putative QTL were associated with SPC explaining 4.5-18.2 % of the observed phenotypic variation across the 6 year/location environments. Among these, two QTL (qsp8-4, qsp8-5) near GMENOD2B and Sat_215 showed an association with SPC in multiple environments, suggesting that they were key QTL related to protein solubility. The QTL × environment interaction demonstrated the complex genetic mechanism of SPC. These SPC-associated QTL and linked markers in soybean will provide important information that can be utilized by breeders to improve the functional quality of soybean varieties.


Asunto(s)
Marcadores Genéticos , Glycine max/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Agua/química , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Ligamiento Genético , Fenotipo , Proteínas de Plantas/genética , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...