Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(5): 607-613, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36646960

RESUMEN

Recent cryogenic electron microscopy (cryo-EM) studies of infectious, ex vivo, prion fibrils from hamster 263K and mouse RML prion strains revealed a similar, parallel in-register intermolecular ß-sheet (PIRIBS) amyloid architecture. Rungs of the fibrils are composed of individual prion protein (PrP) monomers that fold to create distinct N-terminal and C-terminal lobes. However, disparity in the hamster/mouse PrP sequence precludes understanding of how divergent prion strains emerge from an identical PrP substrate. In this study, we determined the near-atomic resolution cryo-EM structure of infectious, ex vivo mouse prion fibrils from the ME7 prion strain and compared this with the RML fibril structure. This structural comparison of two biologically distinct mouse-adapted prion strains suggests defined folding subdomains of PrP rungs and the way in which they are interrelated, providing a structural definition of intra-species prion strain-specific conformations.


Asunto(s)
Priones , Ratones , Animales , Priones/química , Conformación Proteica en Lámina beta , Amiloide/química
2.
Cell Tissue Res ; 392(1): 167-178, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36028585

RESUMEN

Mammalian prions are lethal transmissible pathogens that cause fatal neurodegenerative diseases in humans and animals. They consist of fibrils of misfolded, host-encoded prion protein (PrP) which propagate through templated protein polymerisation. Prion strains produce distinct clinicopathological phenotypes in the same host and appear to be encoded by distinct misfolded PrP conformations and assembly states. Despite fundamental advances in our understanding of prion biology, key knowledge gaps remain. These include precise delineation of prion replication mechanisms, detailed explanation of the molecular basis of prion strains and inter-species transmission barriers, and the structural definition of neurotoxic PrP species. Central to addressing these questions is the determination of prion structure. While high-resolution definition of ex vivo prion fibrils once seemed unlikely, recent advances in cryo-electron microscopy (cryo-EM) and computational methods for 3D reconstruction of amyloids have now made this possible. Recently, near-atomic resolution structures of highly infectious, ex vivo prion fibrils from hamster 263K and mouse RML prion strains were reported. The fibrils have a comparable parallel in-register intermolecular ß-sheet (PIRIBS) architecture that now provides a structural foundation for understanding prion strain diversity in mammals. Here, we review these new findings and discuss directions for future research.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Cricetinae , Humanos , Ratones , Animales , Priones/metabolismo , Microscopía por Crioelectrón , Proteínas Priónicas , Mamíferos/metabolismo , Enfermedades por Prión/metabolismo
3.
Nat Commun ; 13(1): 4004, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831275

RESUMEN

Mammalian prions propagate as distinct strains and are composed of multichain assemblies of misfolded host-encoded prion protein (PrP). Here, we present a near-atomic resolution cryo-EM structure of PrP fibrils present in highly infectious prion rod preparations isolated from the brains of RML prion-infected mice. We found that prion rods comprise single-protofilament helical amyloid fibrils that coexist with twisted pairs of the same protofilaments. Each rung of the protofilament is formed by a single PrP monomer with the ordered core comprising PrP residues 94-225, which folds to create two asymmetric lobes with the N-linked glycans and the glycosylphosphatidylinositol anchor projecting from the C-terminal lobe. The overall architecture is comparable to that of recently reported PrP fibrils isolated from the brain of hamsters infected with the 263K prion strain. However, there are marked conformational variations that could result from differences in PrP sequence and/or represent distinguishing features of the distinct prion strains.


Asunto(s)
Priones , Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Cricetinae , Microscopía por Crioelectrón , Mamíferos/metabolismo , Ratones , Proteínas Priónicas/metabolismo , Priones/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(38): 23815-23822, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900920

RESUMEN

Prions are infectious agents which cause rapidly lethal neurodegenerative diseases in humans and animals following long, clinically silent incubation periods. They are composed of multichain assemblies of misfolded cellular prion protein. While it has long been assumed that prions are themselves neurotoxic, recent development of methods to obtain exceptionally pure prions from mouse brain with maintained strain characteristics, and in which defined structures-paired rod-like double helical fibers-can be definitively correlated with infectivity, allowed a direct test of this assertion. Here we report that while brain homogenates from symptomatic prion-infected mice are highly toxic to cultured neurons, exceptionally pure intact high-titer infectious prions are not directly neurotoxic. We further show that treatment of brain homogenates from prion-infected mice with sodium lauroylsarcosine destroys toxicity without diminishing infectivity. This is consistent with models in which prion propagation and toxicity can be mechanistically uncoupled.


Asunto(s)
Neurotoxinas , Enfermedades por Prión , Priones , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Química Encefálica , Modelos Animales de Enfermedad , Ratones , Neuronas/efectos de los fármacos , Neurotoxinas/aislamiento & purificación , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Enfermedades por Prión/metabolismo , Enfermedades por Prión/fisiopatología , Priones/aislamiento & purificación , Priones/metabolismo , Priones/patogenicidad
5.
Sci Rep ; 9(1): 376, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30675000

RESUMEN

Seeded polymerisation of proteins forming amyloid fibres and their spread in tissues has been implicated in the pathogenesis of multiple neurodegenerative diseases: so called "prion-like" mechanisms. While ex vivo mammalian prions, composed of multichain assemblies of misfolded host-encoded prion protein (PrP), act as lethal infectious agents, PrP amyloid fibrils produced in vitro generally do not. The high-resolution structure of authentic infectious prions and the structural basis of prion strain diversity remain unknown. Here we use cryo-electron microscopy and atomic force microscopy to examine the structure of highly infectious PrP rods isolated from mouse brain in comparison to non-infectious recombinant PrP fibrils generated in vitro. Non-infectious recombinant PrP fibrils are 10 nm wide single fibres, with a double helical repeating substructure displaying small variations in adhesive force interactions across their width. In contrast, infectious PrP rods are 20 nm wide and contain two fibres, each with a double helical repeating substructure, separated by a central gap of 8-10 nm in width. This gap contains an irregularly structured material whose adhesive force properties are strikingly different to that of the fibres, suggestive of a distinct composition. The structure of the infectious PrP rods, which cause lethal neurodegeneration, readily differentiates them from all other protein assemblies so far characterised in other neurodegenerative diseases.


Asunto(s)
Amiloide/química , Proteínas Priónicas/química , Priones/química , Amiloide/ultraestructura , Animales , Mamíferos , Microscopía de Fuerza Atómica , Priones/ultraestructura , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes , Relación Estructura-Actividad
6.
Open Biol ; 6(5)2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27249641

RESUMEN

Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP.


Asunto(s)
Encéfalo/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Animales , Cricetinae , Tomografía con Microscopio Electrónico , Ratones , Modelos Moleculares , Proteínas Priónicas/ultraestructura , Estructura Secundaria de Proteína
7.
Sci Rep ; 5: 10062, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25950908

RESUMEN

Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method's effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions.


Asunto(s)
Encéfalo/metabolismo , Priones/aislamiento & purificación , Priones/metabolismo , Animales , Cricetinae , Humanos , Ratones , Priones/ultraestructura
8.
PLoS One ; 8(1): e54454, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349894

RESUMEN

Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02) and Sod1 (P<0.0001) suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.


Asunto(s)
Estudios de Asociación Genética , Enfermedades por Prión/genética , Superóxido Dismutasa/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Enfermedades por Prión/fisiopatología , Sitios de Carácter Cuantitativo/genética , Receptores de Interleucina-11/genética , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa-1
9.
Proc Natl Acad Sci U S A ; 109(34): 13722-7, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869728

RESUMEN

Prion diseases are fatal neurodegenerative disorders that include bovine spongiform encephalopathy (BSE) and scrapie in animals and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by long incubation periods, variation in which is determined by many factors including genetic background. In some cases it is possible that incubation time may be directly correlated to the level of gene expression. To test this hypothesis, we combined incubation time data from five different inbred lines of mice with quantitative gene expression profiling in normal brains and identified five genes with expression levels that correlate with incubation time. One of these genes, Hspa13 (Stch), is a member of the Hsp70 family of ATPase heat shock proteins, which have been previously implicated in prion propagation. To test whether Hspa13 plays a causal role in determining the incubation period, we tested two overexpressing mouse models. The Tc1 human chromosome 21 (Hsa21) transchromosomic mouse model of Down syndrome is trisomic for many Hsa21 genes including Hspa13 and following Chandler/Rocky Mountain Laboratory (RML) prion inoculation, shows a 4% reduction in incubation time. Furthermore, a transgenic model with eightfold overexpression of mouse Hspa13 exhibited highly significant reductions in incubation time of 16, 15, and 7% following infection with Chandler/RML, ME7, and MRC2 prion strains, respectively. These data further implicate Hsp70-like molecular chaperones in protein misfolding disorders such as prion disease.


Asunto(s)
Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/fisiología , Enfermedades por Prión/genética , Adenosina Trifosfatasas/química , Animales , Proteínas HSP70 de Choque Térmico/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Modelos Genéticos , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Priones/metabolismo , ARN Complementario/metabolismo
10.
PLoS One ; 6(12): e28741, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174884

RESUMEN

Prion disease incubation time in mice is determined by many factors including PrP expression level, Prnp alleles, genetic background, prion strain and route of inoculation. Sex differences have been described in age of onset for vCJD and in disease duration for both vCJD and sporadic CJD and have also been shown in experimental models. The sex effects reported for mouse incubation times are often contradictory and detail only one strain of mice or prions, resulting in broad generalisations and a confusing picture. To clarify the effect of sex on prion disease incubation time in mice we have compared male and female transmission data from twelve different inbred lines of mice inoculated with at least two prion strains, representing both mouse-adapted scrapie and BSE. Our data show that sex can have a highly significant difference on incubation time. However, this is limited to particular mouse and prion strain combinations. No sex differences were seen in endogenous PrP(C) levels nor in the neuropathological markers of prion disease: PrP(Sc) distribution, spongiosis, neuronal loss and gliosis. These data suggest that when comparing incubation times between experimental groups, such as testing the effects of modifier genes or therapeutics, single sex groups should be used.


Asunto(s)
Enfermedades por Prión/patología , Caracteres Sexuales , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Endogamia , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Análisis de Supervivencia , Factores de Tiempo
11.
PLoS One ; 5(12): e15679, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21187933

RESUMEN

Disease-related prion protein, PrP(Sc), is classically distinguished from its normal cellular precursor, PrP(C), by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrP(Sc) using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prion infectivity may be destroyed by this treatment. Here we report that digestion of RML prion-infected mouse brain with pronase E, followed by precipitation with sodium phosphotungstic acid, eliminates the large majority of brain proteins, including PrP(C), while preserving >70% of infectious prion titre. This procedure now allows characterization of proteinase K-sensitive prions and investigation of their clinical relevance in human and animal prion disease without being confounded by contaminating PrP(C).


Asunto(s)
Endopeptidasa K/metabolismo , Ácido Fosfotúngstico/metabolismo , Priones/metabolismo , Pronasa/metabolismo , Animales , Encéfalo/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Ratones , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Scrapie/metabolismo , Tinción con Nitrato de Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...