Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8439, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349459

RESUMEN

Chimeric antigen receptor (CAR)-modified natural killer (NK) cells show antileukemic activity against acute myeloid leukemia (AML) in vivo. However, NK cell-mediated tumor killing is often impaired by the interaction between human leukocyte antigen (HLA)-E and the inhibitory receptor, NKG2A. Here, we describe a strategy that overcomes CAR-NK cell inhibition mediated by the HLA-E-NKG2A immune checkpoint. We generate CD33-specific, AML-targeted CAR-NK cells (CAR33) combined with CRISPR/Cas9-based gene disruption of the NKG2A-encoding KLRC1 gene. Using single-cell multi-omics analyses, we identified transcriptional features of activation and maturation in CAR33-KLRC1ko-NK cells, which are preserved following exposure to AML cells. Moreover, CAR33-KLRC1ko-NK cells demonstrate potent antileukemic killing activity against AML cell lines and primary blasts in vitro and in vivo. We thus conclude that NKG2A-deficient CAR-NK cells have the potential to bypass immune suppression in AML.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Células Asesinas Naturales , Leucemia Mieloide Aguda , Subfamília C de Receptores Similares a Lectina de Células NK , Receptores Quiméricos de Antígenos , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Humanos , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Células Asesinas Naturales/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Edición Génica/métodos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/genética , Línea Celular Tumoral , Animales , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Ratones , Inmunoterapia Adoptiva/métodos
2.
Mol Cancer ; 23(1): 210, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342291

RESUMEN

Assessing the prognosis of patients with aggressive non-Hodgkin B cell lymphoma mainly relies on a clinical risk score (IPI). Standard first-line therapies are based on a chemo-immunotherapy with rituximab, which mediates CD16-dependent antibody-dependent cellular cytotoxicity (ADCC). We phenotypically and functionally analyzed blood samples from 46 patients focusing on CD16+ NK cells, CD16+ T cells and CD16+ monocytes. Kaplan-Meier survival curves show a superior progression-free survival (PFS) for patients having more than 1.6% CD16+ T cells (p = 0.02; HR = 0.13 (0.007-0.67)) but an inferior PFS having more than 10.0% CD16+ monocytes (p = 0.0003; HR = 16.0 (3.1-291.9)) at diagnosis. Surprisingly, no correlation with NK cells was found. The increased risk of relapse in the presence of > 10.0% CD16+ monocytes is reversed by the simultaneous occurrence of > 1.6% CD16+ T cells. The unexpectedly strong protective function of CD16+ T cells could be explained by their high antibody-dependent cellular cytotoxicity as quantified by real-time killing assays and single-cell imaging. The combined analysis of CD16+ monocytes (> 10%) and CD16+ T cells (< 1.6%) provided a strong model with a Harrell's C index of 0.80 and a very strong power of 0.996 even with our sample size of 46 patients. CD16 assessment in the initial blood analysis is thus a precise marker for early relapse prediction.


Asunto(s)
Células Asesinas Naturales , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Pronóstico , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Biomarcadores de Tumor , Masculino , Femenino , Recurrencia Local de Neoplasia/patología , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/sangre , Linfoma de Células B/metabolismo , Linfoma de Células B/sangre , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Persona de Mediana Edad , Linfocitos T/metabolismo , Linfocitos T/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Anciano , Estimación de Kaplan-Meier
3.
Mol Ther Oncol ; 32(3): 200850, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39176070

RESUMEN

T cell-derived cancers are hallmarked by heterogeneity, aggressiveness, and poor clinical outcomes. Available targeted therapies are severely limited due to a lack of target antigens that allow discrimination of malignant from healthy T cells. Here, we report a novel approach for the treatment of T cell diseases based on targeting the clonally rearranged T cell receptor displayed by the cancerous T cell population. As a proof of concept, we identified an antibody with unique specificity toward a distinct T cell receptor (TCR) and developed antibody-drug conjugates, precisely recognizing and eliminating target T cells while preserving overall T cell repertoire integrity and cellular immunity. Our anti-TCR antibody-drug conjugates demonstrated effective receptor-mediated cell internalization, associated with induction of cancer cell death with strong signs of apoptosis. Furthermore, cell proliferation-inhibiting bystander effects observed on target-negative cells may contribute to the molecules' anti-tumor properties precluding potential tumor escape mechanisms. To our knowledge, this represents the first anti-TCR antibody-drug conjugate designed as custom-tailored immunotherapy for T cell-driven pathologies.

4.
Mol Ther ; 32(7): 2357-2372, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38751112

RESUMEN

Natural killer (NK) cells have high intrinsic cytotoxic capacity, and clinical trials have demonstrated their safety and efficacy for adoptive cancer therapy. Expression of chimeric antigen receptors (CARs) enhances NK cell target specificity, with these cells applicable as off-the-shelf products generated from allogeneic donors. Here, we present for the first time an innovative approach for CAR NK cell engineering employing a non-viral Sleeping Beauty (SB) transposon/transposase-based system and minimized DNA vectors termed minicircles. SB-modified peripheral blood-derived primary NK cells displayed high and stable CAR expression and more frequent vector integration into genomic safe harbors than lentiviral vectors. Importantly, SB-generated CAR NK cells demonstrated enhanced cytotoxicity compared with non-transfected NK cells. A strong antileukemic potential was confirmed using established acute lymphocytic leukemia cells and patient-derived primary acute B cell leukemia and lymphoma samples as targets in vitro and in vivo in a xenograft leukemia mouse model. Our data suggest that the SB-transposon system is an efficient, safe, and cost-effective approach to non-viral engineering of highly functional CAR NK cells, which may be suitable for cancer immunotherapy of leukemia as well as many other malignancies.


Asunto(s)
Vectores Genéticos , Inmunoterapia Adoptiva , Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Ratones , Vectores Genéticos/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Transposasas/genética , Transposasas/metabolismo , Línea Celular Tumoral , Elementos Transponibles de ADN , Citotoxicidad Inmunológica , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Ingeniería Celular/métodos
5.
Oncoimmunology ; 11(1): 2081415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694192

RESUMEN

Natural Killer (NK) cells are known for their high intrinsic cytotoxic capacity, and the possibility to be applied as 'off-the-shelf' product makes them highly attractive for cell-based immunotherapies. In patients with multiple myeloma (MM), an elevated number of NK cells has been correlated with higher overall-survival rate. However, NK cell function can be impaired by upregulation of inhibitory receptors, such as the immune checkpoint NKG2A. Here, we developed a CRISPR-Cas9-based gene editing protocol that allowed us to knockout about 80% of the NKG2A-encoding killer cell lectin like receptor C1 (KLRC1) locus in primary NK cells. In-depth phenotypic analysis confirmed significant reduction in NKG2A protein expression. Importantly, the KLRC1-edited NK cells showed significantly increased cytotoxicity against primary MM cells isolated from a small cohort of patients, and maintained the NK cell-specific cytokine production. In conclusion, KLRC1-editing in primary NK cells has the prospect of overcoming immune checkpoint inhibition in clinical applications.


Asunto(s)
Mieloma Múltiple , Subfamília C de Receptores Similares a Lectina de Células NK , Sistemas CRISPR-Cas/genética , Edición Génica , Humanos , Células Asesinas Naturales/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
6.
Materials (Basel) ; 14(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065310

RESUMEN

The current-voltage characteristics of ZnO/RuO2 Schottky diodes prepared by magnetron sputtering are shown to exhibit a reversible hysteresis behavior, which corresponds to a variation of the Schottky barrier height between 0.9 and 1.3 eV upon voltage cycling. The changes in the barrier height are attributed to trapping and de-trapping of electrons in oxygen vacancies.

7.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807011

RESUMEN

The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible "off-the-shelf" therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.

8.
Front Immunol ; 8: 627, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620384

RESUMEN

The vascular endothelium interacts with all types of blood cells and is a key modulator of local and systemic inflammatory processes, for example, in the adhesion of blood leukocytes to endothelial cells (EC) and the following extravasation into the injured tissue. The endothelium is constantly exposed to mechanical forces caused by blood flow, and the resulting shear stress is essential for the maintenance of endothelial function. Changes in local hemodynamics are sensed by EC, leading to acute or persistent changes. Therefore, in vitro assessment of EC functionality should include shear stress as an essential parameter. Parallel-plate flow chambers with adjustable shear stress can be used to study EC properties. However, commercially available systems are not suitable for radiation experiments, especially with charged particles, which are increasingly used in radiotherapy of tumors. Therefore, research on charged-particle-induced vascular side effects is needed. In addition, α-particle emitters (e.g., radon) are used to treat inflammatory diseases at low doses. In the present study, we established a flow chamber system, applicable for the investigation of radiation induced changes in the adhesion of lymphocytes to EC as readout for the onset of an inflammatory reaction or the modification of a pre-existing inflammatory state. In this system, primary human EC are cultured under physiological laminar shear stress, subjected to a proinflammatory treatment and/or irradiation with X-rays or charged particles, followed by a coincubation with primary human lymphocytes (peripheral blood lymphocytes (PBL)). Analysis is performed by semiautomated quantification of fluorescent staining in microscopic pictures. First results obtained after irradiation with X-rays or helium ions indicate decreased adhesion of PBL to EC under laminar conditions for both radiation qualities, whereas adhesion of PBL under static conditions is not clearly affected by irradiation. Under static conditions, no radiation-induced changes in surface expression of adhesion molecules and activation of nuclear factor kappa B (NF-κB) signaling were observed after single cell-based high-throughput analysis. In subsequent studies, these investigations will be extended to laminar conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA