Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(24): e113595, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37937667

RESUMEN

Plants often experience recurrent stressful events, for example, during heat waves. They can be primed by heat stress (HS) to improve the survival of more severe heat stress conditions. At certain genes, sustained expression is induced for several days beyond the initial heat stress. This transcriptional memory is associated with hyper-methylation of histone H3 lysine 4 (H3K4me3), but it is unclear how this is maintained for extended periods. Here, we determined histone turnover by measuring the chromatin association of HS-induced histone H3.3. Genome-wide histone turnover was not homogenous; in particular, H3.3 was retained longer at heat stress memory genes compared to HS-induced non-memory genes during the memory phase. While low nucleosome turnover retained H3K4 methylation, methylation loss did not affect turnover, suggesting that low nucleosome turnover sustains H3K4 methylation, but not vice versa. Together, our results unveil the modulation of histone turnover as a mechanism to retain environmentally mediated epigenetic modifications.


Asunto(s)
Histonas , Nucleosomas , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Cromatina/genética , Respuesta al Choque Térmico/genética , Epigénesis Genética
2.
Nat Commun ; 14(1): 7052, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923709

RESUMEN

Photorespiration (PR) is the pathway that detoxifies the product of the oxygenation reaction of Rubisco. It has been hypothesized that in dynamic light environments, PR provides a photoprotective function. To test this hypothesis, we characterized plants with varying PR enzyme activities under fluctuating and non-fluctuating light conditions. Contrasting our expectations, growth of mutants with decreased PR enzyme levels was least affected in fluctuating light compared with wild type. Results for growth, photosynthesis and metabolites combined with thermodynamics-based flux analysis revealed two main causal factors for this unanticipated finding: reduced rates of photosynthesis in fluctuating light and complex re-routing of metabolic fluxes. Only in non-fluctuating light, mutants lacking the glutamate:glyoxylate aminotransferase 1 re-routed glycolate processing to the chloroplast, resulting in photooxidative damage through H2O2 production. Our results reveal that dynamic light environments buffer plant growth and metabolism against photorespiratory perturbations.


Asunto(s)
Peróxido de Hidrógeno , Fotosíntesis , Peróxido de Hidrógeno/metabolismo , Plantas/metabolismo , Cloroplastos/metabolismo , Desarrollo de la Planta , Luz , Dióxido de Carbono/metabolismo
3.
Metab Eng ; 80: 184-192, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37802292

RESUMEN

Quantification of how different environmental cues affect protein allocation can provide important insights for understanding cell physiology. While absolute quantification of proteins can be obtained by resource-intensive mass-spectrometry-based technologies, prediction of protein abundances offers another way to obtain insights into protein allocation. Here we present CAMEL, a framework that couples constraint-based modelling with machine learning to predict protein abundance for any environmental condition. This is achieved by building machine learning models that leverage static features, derived from protein sequences, and condition-dependent features predicted from protein-constrained metabolic models. Our findings demonstrate that CAMEL results in excellent prediction of protein allocation in E. coli (average Pearson correlation of at least 0.9), and moderate performance in S. cerevisiae (average Pearson correlation of at least 0.5). Therefore, CAMEL outperformed contending approaches without using molecular read-outs from unseen conditions and provides a valuable tool for using protein allocation in biotechnological applications.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Animales , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Camelus , Proteínas/metabolismo , Aprendizaje Automático
4.
Metab Eng ; 79: 97-107, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422133

RESUMEN

Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid ß-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ingeniería Metabólica , Optogenética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo
5.
Biotechnol Adv ; 67: 108203, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37348662

RESUMEN

Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Temperatura , Redes y Vías Metabólicas/genética , Fenotipo
6.
Nat Commun ; 14(1): 1485, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932067

RESUMEN

Turnover numbers characterize a key property of enzymes, and their usage in constraint-based metabolic modeling is expected to increase the prediction accuracy of diverse cellular phenotypes. In vivo turnover numbers can be obtained by integrating reaction rate and enzyme abundance measurements from individual experiments. Yet, their contribution to improving predictions of condition-specific cellular phenotypes remains elusive. Here, we show that available in vitro and in vivo turnover numbers lead to poor prediction of condition-specific growth rates with protein-constrained models of Escherichia coli and Saccharomyces cerevisiae, particularly when protein abundances are considered. We demonstrate that correction of turnover numbers by simultaneous consideration of proteomics and physiological data leads to improved predictions of condition-specific growth rates. Moreover, the obtained estimates are more precise than corresponding in vitro turnover numbers. Therefore, our approach provides the means to correct turnover numbers and paves the way towards cataloguing kcatomes of other organisms.


Asunto(s)
Escherichia coli , Redes y Vías Metabólicas , Escherichia coli/metabolismo , Modelos Biológicos
7.
Plant Physiol ; 191(4): 2150-2166, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36721968

RESUMEN

Plant respiration not only provides energy to support all cellular processes, including biomass production, but also plays a major role in the global carbon cycle. Therefore, modulation of plant respiration can be used to both increase the plant yield and mitigate the effects of global climate change. Mechanistic modeling of plant respiration at sufficient biochemical detail can provide key insights for rational engineering of this process. Yet, despite its importance, plant respiration has attracted considerably less modeling effort in comparison to photosynthesis. In this update review, we highlight the advances made in modeling of plant respiration, emphasizing the gradual but important change from phenomenological to models based on first principles. We also provide a detailed account of the existing resources that can contribute to resolving the challenges in modeling plant respiration. These resources point at tangible improvements in the representation of cellular processes that contribute to CO2 evolution and consideration of kinetic properties of underlying enzymes to facilitate mechanistic modeling. The update review emphasizes the need to couple biochemical models of respiration with models of acclimation and adaptation of respiration for their effective usage in guiding breeding efforts and improving terrestrial biosphere models tailored to future climate scenarios.


Asunto(s)
Fitomejoramiento , Plantas , Cambio Climático , Fotosíntesis , Respiración , Respiración de la Célula , Dióxido de Carbono , Hojas de la Planta
8.
PLoS Comput Biol ; 18(3): e1009906, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35320266

RESUMEN

Composition and functions of microbial communities affect important traits in diverse hosts, from crops to humans. Yet, mechanistic understanding of how metabolism of individual microbes is affected by the community composition and metabolite leakage is lacking. Here, we first show that the consensus of automatically generated metabolic reconstructions improves the quality of the draft reconstructions, measured by comparison to reference models. We then devise an approach for gap filling, termed COMMIT, that considers metabolites for secretion based on their permeability and the composition of the community. By applying COMMIT with two soil communities from the Arabidopsis thaliana culture collection, we could significantly reduce the gap-filling solution in comparison to filling gaps in individual reconstructions without affecting the genomic support. Inspection of the metabolic interactions in the soil communities allows us to identify microbes with community roles of helpers and beneficiaries. Therefore, COMMIT offers a versatile fully automated solution for large-scale modelling of microbial communities for diverse biotechnological applications.


Asunto(s)
Microbiota , Genoma , Genómica , Humanos , Suelo , Microbiología del Suelo
9.
mSystems ; 7(1): e0121621, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35076269

RESUMEN

Rhizophagus irregularis is one of the most extensively studied arbuscular mycorrhizal fungi (AMF) that forms symbioses with and improves the performance of many crops. Lack of transformation protocol for R. irregularis renders it challenging to investigate molecular mechanisms that shape the physiology and interactions of this AMF with plants. Here, we used all published genomics, transcriptomics, and metabolomics resources to gain insights into the metabolic functionalities of R. irregularis by reconstructing its high-quality genome-scale metabolic network that considers enzyme constraints. Extensive validation tests with the enzyme-constrained metabolic model demonstrated that it can be used to (i) accurately predict increased growth of R. irregularis on myristate with minimal medium; (ii) integrate enzyme abundances and carbon source concentrations that yield growth predictions with high and significant Spearman correlation ([Formula: see text] = 0.74) to measured hyphal dry weight; and (iii) simulate growth rate increases with tighter association of this AMF with the host plant across three fungal structures. Based on the validated model and system-level analyses that integrate data from transcriptomics studies, we predicted that differences in flux distributions between intraradical mycelium and arbuscles are linked to changes in amino acid and cofactor biosynthesis. Therefore, our results demonstrated that the enzyme-constrained metabolic model can be employed to pinpoint mechanisms driving developmental and physiological responses of R. irregularis to different environmental cues. In conclusion, this model can serve as a template for other AMF and paves the way to identify metabolic engineering strategies to modulate fungal metabolic traits that directly affect plant performance. IMPORTANCE Mounting evidence points to the benefits of the symbiotic interactions between the arbuscular mycorrhiza fungus Rhizophagus irregularis and crops; however, the molecular mechanisms underlying the physiological responses of this fungus to different host plants and environments remain largely unknown. We present a manually curated, enzyme-constrained, genome-scale metabolic model of R. irregularis that can accurately predict experimentally observed phenotypes. We show that this high-quality model provides an entry point into better understanding the metabolic and physiological responses of this fungus to changing environments due to the availability of different nutrients. The model can be used to design metabolic engineering strategies to tailor R. irregularis metabolism toward improving the performance of host plants.


Asunto(s)
Micorrizas , Micorrizas/genética , Simbiosis/genética , Genoma Fúngico , Plantas/genética
10.
Sci Rep ; 11(1): 17415, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465818

RESUMEN

Large-scale biochemical models are of increasing sizes due to the consideration of interacting organisms and tissues. Model reduction approaches that preserve the flux phenotypes can simplify the analysis and predictions of steady-state metabolic phenotypes. However, existing approaches either restrict functionality of reduced models or do not lead to significant decreases in the number of modelled metabolites. Here, we introduce an approach for model reduction based on the structural property of balancing of complexes that preserves the steady-state fluxes supported by the network and can be efficiently determined at genome scale. Using two large-scale mass-action kinetic models of Escherichia coli, we show that our approach results in a substantial reduction of 99% of metabolites. Applications to genome-scale metabolic models across kingdoms of life result in up to 55% and 85% reduction in the number of metabolites when arbitrary and mass-action kinetics is assumed, respectively. We also show that predictions of the specific growth rate from the reduced models match those based on the original models. Since steady-state flux phenotypes from the original model are preserved in the reduced, the approach paves the way for analysing other metabolic phenotypes in large-scale biochemical networks.


Asunto(s)
Escherichia coli/metabolismo , Genoma Bacteriano , Redes y Vías Metabólicas , Modelos Biológicos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...