Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(37): 24735-43, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19620242

RESUMEN

Fredericamycin (FDM) A, a highly oxidized aromatic pentadecaketide natural product, exhibits potent cytotoxicity and has been studied as a new anticancer drug lead. The FDM biosynthetic gene cluster has been previously cloned from Streptomyces griseus ATCC 49344 and successfully expressed in the heterologous host Streptomyces albus J1074. The fdmM and fdmM1 genes code for two proteins with high sequence homology to each other but unknown function. In-frame deletion of each of the genes from the fdm cluster was accomplished in the S. albus host. Each mutant failed to produce FDM A and the key biosynthetic intermediate FDM E but produced various new metabolites, the titers of which were dramatically increased via overexpression of an fdm pathway-specific activator fdmR1. The DeltafdmM mutant strain accumulated three new compounds FDM M-1, FDM M-2, and FDM M-3, whereas the DeltafdmM1 mutant strain produced one new compound FDM M1-1. Isolation and structural characterization of these compounds enable us to propose that FdmM and FdmM1 catalyze the C-6 and C-8 hydroxylations for FDM biosynthesis, respectively. Homologs of FdmM and FdmM1 can be found in biosynthetic gene clusters of many other aromatic polyketides, ranging from dodecaketides to pentadecaketides, but to date all of them were annotated as proteins of unknown function. Based on the findings reported here for FdmM and FdmM1, we now propose similar functions for those proteins, and FdmM and FdmM1 therefore represent an emerging family of novel oxygenases responsible for hydroxylation of aromatic polyketide natural products.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Oxigenasas/metabolismo , Cromatografía Líquida de Alta Presión , Eliminación de Gen , Genes Bacterianos , Isoquinolinas/química , Isoquinolinas/metabolismo , Modelos Biológicos , Modelos Químicos , Familia de Multigenes , Oxigenasas/genética , Plásmidos/metabolismo , Compuestos de Espiro/química , Compuestos de Espiro/metabolismo , Streptomyces/metabolismo
2.
J Biol Chem ; 284(13): 8256-64, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19189972

RESUMEN

Tallysomycins (TLMs) belong to the bleomycin family of anticancer antibiotics. TLMs differ from bleomycins primarily by the presence of a 4-amino-4,6-dideoxy-l-talose sugar attached to C-41 as part of a glycosylcarbinolamide. We previously proposed, on the basis of bioinformatics analysis of the tlm biosynthetic gene cluster from Streptoalloteichus hindustanus E465-94 ATCC 31158, that the tlmK gene is responsible for the attachment of this sugar moiety. We now report that inactivation of tlmK in S. hindustanus abolished TLM A and TLM B production, the resultant DeltatlmK mutant instead accumulated five new metabolites, and introduction of a functional copy of tlmK to the DeltatlmK mutant restored TLM A and TLM B production. Two major metabolites, TLM K-1 and TLM K-2, together with three minor metabolites, TLM K-3, TLM K-4, and TLM K-5, were isolated from the DeltatlmK mutant, and their structures were elucidated. These findings provide experimental evidence supporting the previous functional assignment of tlmK to encode a glycosyltransferase and unveil two carbinolamide pseudoaglycones as key intermediates in the TLM biosynthetic pathway. TlmK stabilizes the carbinolamide intermediates by glycosylating their hemiaminal hydroxyl groups, thereby protecting them from hydrolysis during TLM biosynthesis. In the absence of TlmK, the carbinolamide intermediates fragment to produce an amide TLM K-1 and aldehyde intermediates, which undergo further oxidative fragmentation to afford carboxylic acids TLM K-2, TLM K-3, TLM K-4, and TLM K-5.


Asunto(s)
Actinomycetales/enzimología , Antibióticos Antineoplásicos/biosíntesis , Proteínas Bacterianas/metabolismo , Bleomicina/análogos & derivados , Genes Bacterianos/fisiología , Glucosiltransferasas/metabolismo , Familia de Multigenes/fisiología , Actinomycetales/genética , Proteínas Bacterianas/genética , Bleomicina/biosíntesis , Eliminación de Gen , Glucosiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA