Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083569

RESUMEN

The high prevalence rate of Alzheimer's disease (AD) and mild cognitive impairment (MCI) has been a serious public health threat to the modern society. Recently, many studies have demonstrated the potential of using non-invasive electroencephalography (EEG) and machine learning to assist the diagnosis of AD/MCI. However, the majority of these research recorded EEG signals from a single center, leading to significant concerns regarding the generalizability of the findings in clinical settings. The current study aims to reevaluate the effectiveness of EEG-based machine learning model for the detection of AD/MCI in the case of a relatively large and diverse data set. We collected resting-state EEG data from 150 participants across six hospitals and examined the classification performances of Linear Discriminative Analysis (LDA) classifiers on the phase lag index (PLI) feature. We also compared the performance of PLI over the other commonly-used EEG features and other classifiers. The model was first tested on a training set to select the feature subset and then further validated with an independent test set. The results demonstrate that PLI performs the best compared to other features. The LDA classifier trained with the optimal PLI features can provide 82.50% leave-one-participant-out cross-validation (LOPO-CV) accuracy on the training set and maintain a good enough performance with 75.00% accuracy on the test set. Our results suggest that PLI-based functional connectivity could be considered as a reliable bio-maker to detect AD/MCI in the real-world clinical settings.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico , Electroencefalografía/métodos , Aprendizaje Automático , Descanso , Conjuntos de Datos como Asunto
2.
Biosensors (Basel) ; 11(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34940256

RESUMEN

Major depressive disorder (MDD) is a global healthcare issue and one of the leading causes of disability. Machine learning combined with non-invasive electroencephalography (EEG) has recently been shown to have the potential to diagnose MDD. However, most of these studies analyzed small samples of participants recruited from a single source, raising serious concerns about the generalizability of these results in clinical practice. Thus, it has become critical to re-evaluate the efficacy of various common EEG features for MDD detection across large and diverse datasets. To address this issue, we collected resting-state EEG data from 400 participants across four medical centers and tested classification performance of four common EEG features: band power (BP), coherence, Higuchi's fractal dimension, and Katz's fractal dimension. Then, a sequential backward selection (SBS) method was used to determine the optimal subset. To overcome the large data variability due to an increased data size and multi-site EEG recordings, we introduced the conformal kernel (CK) transformation to further improve the MDD as compared with the healthy control (HC) classification performance of support vector machine (SVM). The results show that (1) coherence features account for 98% of the optimal feature subset; (2) the CK-SVM outperforms other classifiers such as K-nearest neighbors (K-NN), linear discriminant analysis (LDA), and SVM; (3) the combination of the optimal feature subset and CK-SVM achieves a high five-fold cross-validation accuracy of 91.07% on the training set (140 MDD and 140 HC) and 84.16% on the independent test set (60 MDD and 60 HC). The current results suggest that the coherence-based connectivity is a more reliable feature for achieving high and generalizable MDD detection performance in real-life clinical practice.


Asunto(s)
Trastorno Depresivo Mayor , Electroencefalografía , Trastorno Depresivo Mayor/diagnóstico , Humanos , Aprendizaje Automático , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...