Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm X ; 8: 100278, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39263002

RESUMEN

Autologous vein grafts have attracted widespread attention for their high transplantation success rate and low risk of immune rejection. However, this technique is limited by the postoperative neointimal hyperplasia, recurrent stenosis and vein graft occlusion. Hence, we propose the platelet membrane-coated Poly(lactic-co-glycolic acid) (PLGA) containing sildenafil (PPS). Platelet membrane (PM) is characterised by actively targeting damaged blood vessels. The PPS can effectively target the vein grafts and then slowly release sildenafil to treat intimal hyperplasia in the vein grafts, thereby preventing the progression of vein graft restenosis. PPS effectively inhibits the proliferation and migration of vascular smooth muscle cell (VSMCs) and promotes the migration and vascularisation of human umbilical vein endothelial cells (HUVECs). In a New Zealand rabbit model of intimal hyperplasia in vein grafts, the PPS significantly suppressed vascular stenosis and intimal hyperplasia at 14 and 28 days after surgery. Thus, PPS represents a nanomedicine with therapeutic potential for treating intimal hyperplasia of vein grafts.

3.
Mater Today Bio ; 23: 100873, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38149018

RESUMEN

Lipiodol-based transcatheter arterial chemoembolization (TACE) is currently the predominant and first-line treatment option recommended by the global standard for unresectable hepatocellular carcinoma (HCC). However, the unstable emulsion of Lipiodol causes a substantial proportion of chemotherapy drugs to enter the circulation system, leading to poor accumulation in cancer tissues and unexpected side effects of chemotherapy drugs. Herein, we emulsified Lipiodol with a pH-sensitive drug delivery system assembled from hexahistidine and zinc ions (HmA) with a super-high loading capacity of doxorubicin (DOX) and a promising ability to penetrate bio-barriers for the effective treatment of HCC by TACE. In vitro tests showed that DOX@HmA was comparable to free DOX in killing HCC cells. Impressively, during the in vivo TACE treatment, the anti-tumor efficacy of DOX@HmA was significantly greater than that of free DOX, indicating that DOX@HmA increased the accumulation of DOX in tumor. Emulsifying Lipiodol with pH-sensitive DOX@HmA significantly inhibited cell regeneration and tumor angiogenesis and decreased the systemic side effects of chemotherapy, especially by suppressing pulmonary metastasis in liver VX2 tumors in rabbits by inhibiting epithelial-mesenchymal transition (EMT). Emulsifying tumor microenvironment-responsive drug delivery systems (DDSs) with Lipiodol could be a new strategy for clinical TACE chemotherapy with potentially enhanced HCC treatment.

4.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049263

RESUMEN

An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.

5.
Open Life Sci ; 14: 201-207, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33817152

RESUMEN

To investigate how long non-coding RNAs DUXAP8 (LncRNA DUXAP8) influence the cell proliferation and invasion of non-small-cell lung cancer (NSCLC), we detected the expression levels of LncRNA DUXAP8 in lung cancer (LC) tissues, 4 LC-related cell lines (A549, SPC-A1, SK-MES-1 and NCI-H1299) and normal lung tissues via quantitative real-time PCR (qRT-PCR). Compared with normal lung tissue, LncRNA DUXAP8 was significantly up-regulated in NSCLC, especially in stage III / IV and diameter ≥ 3cm of lung cancer. Among 4 lung cancer cell lines, LncRNA DUXAP8 in A549 cells was the highest (P<0.001). Construction of LncRNA DUXAP8 overexpression and LncRNA DUXAP8 knockout in A549 cell lines was further performed and subsequently injected into nude mice to build an in vivo tumor xenograft model. The results indicated that LncRNA DUXAP8 overexpression significantly promoted the A549 cells' proliferation, enhanced invasion and induced tumor growth. Conversely, LncRNA DUXAP8 knockout significantly suppressed A549 cells' proliferation, weakened invasion and inhibited tumor growth. Taken together, our results imply that LncRNA DUXAP8 is a potential regulatory molecular marker in non-small-cell lung cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA