Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(1): 533-542, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38086650

RESUMEN

Molecular self-assembly is a powerful synthesis method for nanomaterials. Promoting the development of self-assembly is not only conducive to the efficient preparation of nanomaterials but also promotes progress in other research fields. Therefore, it is necessary to enhance the advancement of molecular self-assembly, and the key is to deepen the understanding of the correlation between molecular characteristics and self-assembly morphologies. However, some similar amphipihlic molecules self-assemble into assemblies with significant morphology difference, which is challenging to clear the mechanism for experimenters. In this work, we explore the microscopic mechanism of six similar molecules by MD simulations, and the influences of molecular conformation, atomic groups, and polycyclic aromatic hydrocarbons on morphologies are discussed in detail. Our findings enrich the design principles of amphiphilic molecules for self-assembly, which promotes the modular design of molecular self-assembly.

2.
Interdiscip Sci ; 15(3): 393-404, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37115389

RESUMEN

RNA folding prediction is very meaningful and challenging. The molecular dynamics simulation (MDS) of all atoms (AA) is limited to the folding of small RNA molecules. At present, most of the practical models are coarse grained (CG) model, and the coarse-grained force field (CGFF) parameters usually depend on known RNA structures. However, the limitation of the CGFF is obvious that it is difficult to study the modified RNA. Based on the 3 beads model (AIMS_RNA_B3), we proposed the AIMS_RNA_B5 model with three beads representing a base and two beads representing the main chain (sugar group and phosphate group). We first run the all atom molecular dynamic simulation (AAMDS), and fit the CGFF parameter with the AA trajectory. Then perform the coarse-grained molecular dynamic simulation (CGMDS). AAMDS is the foundation of CGMDS. CGMDS is mainly to carry out the conformation sampling based on the current AAMDS state and improve the folding speed. We simulated the folding of three RNAs, which belong to hairpin, pseudoknot and tRNA respectively. Compared to the AIMS_RNA_B3 model, the AIMS_RNA_B5 model is more reasonable and performs better.


Asunto(s)
Simulación de Dinámica Molecular , Pliegue del ARN , ARN
3.
J Phys Chem Lett ; 13(42): 9957-9966, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36260782

RESUMEN

RNA folding prediction is a challenge. Currently, many RNA folding models are coarse-grained (CG) with the potential derived from the known RNA structures. However, this potential is not suitable for modified and entirely new RNA. It is also not suitable for the folding simulation of RNA in the real cellular environment, including many kinds of molecular interactions. In contrast, our proposed model has the potential to address these issues, which is a multiscale simulation scheme based on all-atom (AA) force fields. We fit the CG force field using the trajectories generated by the AA force field and then iteratively perform molecular dynamics (MD) simulations of the two scales. The all-atom molecular dynamics (AAMD) simulation is mainly responsible for the correction of RNA structure, and the CGMD simulation is mainly responsible for efficient conformational sampling. On the basis of this scheme, we can successfully fold three RNAs belonging to a hairpin, a pseudoknot, and a four-way junction.


Asunto(s)
Simulación de Dinámica Molecular , ARN , Conformación Molecular
4.
Phys Chem Chem Phys ; 23(29): 15784-15795, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34286758

RESUMEN

G protein-gated inwardly rectifying potassium (GIRK) channels play essential roles in electrical signaling in neurons and muscle cells. Nonequilibrium environments provide crucial driving forces behind many cellular events. Here, we apply the antiparallel alignment double bilayer model to study GIRK2 in response to the time-dependent membrane potential. Using molecular dynamics and umbrella sampling, we examined the time-dependent environmental impact on the ion conduction, energy basis, and primary motions of GIRK2 in different complex states with phosphatidylinositol-4,5-bisphosphate (PIP2) and G-protein ßγ subunits (Gßγ). The antiparallel alignment double bilayer model enables us to study the transport performance in inward and outward K+ and mixed K+ and Na+. We obtained the recoverable discharge process of GIRK2 complexed with both PIP2 and Gßγ, compared with occasional conduction under PIP2-only regulation. Calculations of potential of mean force suggest different regulation by the helix bundle crossing (HBC) gate and G-loop gate regarding different complex states and under a membrane potential. In a nonequilibrium environment, distinct functional rocking motions of GIRK2 were identified under strengthened correlations between the transmembrane helices and downstream cytoplasmic domains with binding of PIP2, cations, and Gßγ. The findings suggest the potential domain motions and dynamics associated with a nonequilibrium environment and highlight the application of the antiparallel alignment double bilayer model to investigate factors in an asymmetric environment.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Cationes/química , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Potenciales de la Membrana , Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato/química , Potasio/química , Conformación Proteica , Sodio/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...