Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 54: 182-194, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30668368

RESUMEN

BACKGROUND: Clinical evidence gathered in Chinese communities suggested that acupoint sticking therapy could be an alternative treatment for asthma-related diseases. However, its underlying mechanism is still poorly understood. AIM/HYPOTHESIS: In this study, we aimed to investigate the mechanism of the anti-inflammatory effect of acupoint sticking application with 'Treatment of Winter Disease in Summer' (TWDS) prescription by using metabolomics. METHODS: Allergic asthma in guinea pig was sensitized and challenged by ovalbumin (OVA). Histopathological evaluation of the lung tissue was performed by hematoxylin and eosin (H&E) staining and Masson's trichrome staining. The levels of Th2 cytokine and IgE level in serum were measured using enzyme-linked immunoassay (ELISA). The mRNA expression levels of IL-4, IL-5, IL-13 and orosomucoid-like 3 (ORMDL3) were measured using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Proteins of NF-κB signaling pathway were measured using western blot. The serum metabolomics profiles were obtained by using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS). RESULTS: The overall results confirmed that AST with TWDS prescription had a significant protective effect against OVA-induced allergic asthma in guinea pig. This treatment not only attenuated airway inflammation and collagen deposition in the airway, but also decreased the levels of IL-4, IL-5, IL-13 and IgE in serum. In addition, metabolomics results indicated that metabolisms of phospholipid, sphingolipid, purine, amino acid and level of epinephrine were restored back to the normal control level. Moreover, results of the gene expression of ORMDL3 in lung tissues indicated that AST using TWDS could alter the sphingolipid metabolism. Further western blotting analysis also showed that its anti-inflammatory mechanism was by decreasing the phosphorylation of p65 and IκB. CONCLUSION: The study demonstrated that metabolomics provides a better understanding of the actions of TWDS acupoint sticking therapy on OVA-induced allergic asthma.


Asunto(s)
Terapia por Acupuntura/métodos , Antiasmáticos/farmacología , Asma/terapia , Medicamentos Herbarios Chinos/farmacología , Hipersensibilidad/terapia , Animales , Asma/metabolismo , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Cobayas , Hipersensibilidad/metabolismo , Inmunoglobulina E/sangre , Pulmón/metabolismo , Pulmón/patología , Masculino , Proteínas de la Membrana/genética , Metabolómica , FN-kappa B/metabolismo , Ovalbúmina/efectos adversos , Transducción de Señal/efectos de los fármacos
3.
Pharmacogn Mag ; 14(53): 110-115, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29576710

RESUMEN

INTRODUCTION: Melanin is synthesized by melanocytes, which are located in the basal layer of the skin. After synthesis, melanin is further deposited on the surface of the skin to form black spots or chloasma. Tyrosinase is a rate-limiting enzyme that plays an important role in melanogenesis. Currently, there are many drugs that inhibit tyrosinase expression to further reduce melanogenesis. Nevertheless, some of these could reverse the pharmacological effect of other drugs, when used simultaneously. MATERIALS AND METHODS: B16 mouse melanoma cells were treated with the tyrosinase inhibitors licochalcone A and ß-arbutin, alone or in combination with capsaicin, an alkaloid found in peppers. Cytotoxicity, melanin content, and tyrosinase activity and expression were determined. RESULTS: Licochalcone A/ß-arbutin inhibited tyrosinase expression and further hindered melanin synthesis when applied individually to B16 mouse melanoma cells. However, licochalcone A/ß-arbutin combined with 50 µmol/L capsaicin enhanced the expression of tyrosinase in these cells and further increased melanin content. CONCLUSION: Our data implied that capsaicin could reverse the inhibitory effect of licochalcone A/ß-arbutin on tyrosinase expression in B16 mouse melanoma cells. SUMMARY: B16 mouse melanoma cells were treated with the tyrosinase inhibitors licochalcone A and ß-arbutin, alone or in combination with capsaicin, an alkaloid found in peppers. Cytotoxicity, melanin content, and tyrosinase activity and expression were determined. Licochalcone A/ß-arbutin inhibited tyrosinase expression and further hindered melanin synthesis when applied individually to B16 mouse melanoma cells. However, licochalcone A/ß-arbutin combined with 50 µmol/L capsaicin enhanced the expression of tyrosinase in these cells and further increased melanin content. Our research implied that capsaicin could reverse the inhibitory effect of licochalcone A/ß-arbutin on tyrosinase expression in B16 mouse melanoma cells. Abbreviations used: B16: B16 mouse melanoma cells; L-DOPA: 3, 4-L-dihydroxyphenylalanine; TYR: Tyrosinase; USP: United States Pharmacopeia; FBS: Fetal bovine serum; EDTA: Ethylenediaminetetraacetic acid; DMSO: Dimethyl sulfoxide; RPMI: Roswell Park Memorial Institute; MTT3: 4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, NaOH: Sodium hydroxide; PBS: Phosphate-buffered saline; RIPA: Radio-immunoprecipitation assay; PMSF: Phenylmethanesulfonyl fluoride or phenylmethylsulfonyl fluoride; SDS: Sodium dodecyl sulfate, sodium salt; PVDF: Polyvinylidene fluoride; ECL: Enhanced chemiluminescence.

4.
J Microencapsul ; 32(7): 677-86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225493

RESUMEN

In this study, a central composite rotatable design based on response surface methodology (RSM) was employed to design and formulate an appropriate paeonol microparticle formulation. Five levels of a three-factor, rotatable, central composite design were used to evaluate the critical formulation variables. The optimum conditions for preparing paeonol-loaded microparticles were predicted to be: polyvinyl alcohol (PVA) content (2.84%), the ratio of drug to polymer (6.88) and the stirring rate (1007.59 rpm). The optimized responses for production yield and loading efficiency were found to be 68.86% and 55.90%, respectively, and the particle size were 23.27 ± 0.76 µm and the sorting coefficient (σ) was 0.732. Furthermore, in vitro release study suggested that microparticle could be a suitable delivery system in treating skin disease for its sustained release of drug. In conclusion, RSM can be successfully used to optimize the effect of formulation variables.


Asunto(s)
Acetofenonas/química , Nanopartículas/química , Acetofenonas/administración & dosificación , Acetofenonas/uso terapéutico , Algoritmos , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Pomadas , Tamaño de la Partícula , Alcohol Polivinílico , Enfermedades de la Piel/tratamiento farmacológico , Propiedades de Superficie
5.
PLoS One ; 8(11): e79881, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278204

RESUMEN

The aim of the present study was to design a novel topical skin-target drug-delivery system, the paeonol microsponge, and to investigate its drug-release patterns in dosage form, both in vitro and in vivo. Paeonol microsponges were prepared using the quasi-emulsion solvent-diffusion method. In vitro release studies were carried out using Franz diffusion cells, while in vivo studies were investigated by microdialysis after the paeonol microsponges were incorporated into a cream base. In vitro release studies showed that the drug delivered via microsponges increased the paeonol permeation rate. Ex vivo drug-deposition studies showed that the microsponge formulation improved drug residence in skin. In addition, in vivo microdialysis showed that the values for the area under the concentration versus time curve (AUC) for the paeonol microsponge cream was much higher than that of paeonol cream without microsponges. Maximum time (Tmax) was 220 min for paeonol microsponge cream and 480 min for paeonol cream, while the half-life (t1/2) of paeonol microsponge cream (935.1 min) was almost twice that of paeonol cream (548.6 min) in the skin (n = 3). Meanwhile, in the plasma, the AUC value for paeonol microsponge cream was half that of the paeonol cream. Based on these results, paeonol-loaded microsponge formulations could be a better alternative for treating skin disease, as the formulation increases drug bioavailability by lengthening the time of drug residence in the skin and should reduce side-effects because of the lower levels of paeonol moving into the circulation.


Asunto(s)
Acetofenonas/administración & dosificación , Sistemas de Liberación de Medicamentos , Absorción Cutánea , Acetofenonas/farmacocinética , Animales , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Femenino , Técnicas In Vitro , Ratones , Ratones Desnudos , Microdiálisis , Microscopía Electrónica de Rastreo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA