Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Small ; : e2400069, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634246

RESUMEN

The normal operation of organelles is critical for tumor growth and metastasis. Herein, an intelligent nanoplatform (BMAEF) is fabricated to perform on-demand destruction of mitochondria and golgi apparatus, which also generates the enhanced photothermal-immunotherapy, resulting in the effective inhibition of primary and metastasis tumor. The BMAEF has a core of mesoporous silica nanoparticles loaded with brefeldin A (BM), which is connected to ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and folic acid co-modified gold nanoparticles (AEF). During therapy, the BMAEF first accumulates in tumor cells via folic acid-induced targeting. Subsequently, the schiff base/ester bond cleaves in lysosome to release brefeldin A and AEF with exposed EGTA. The EGTA further captures Ca2+ to block ion transfer among mitochondria, endoplasmic reticulum, and golgi apparatus, which not only induced dysfunction of mitochondria and golgi apparatus assisted by brefeldin A to suppress both energy and material metabolism against tumor growth and metastasis, but causes AEF aggregation for tumor-specific photothermal therapy and photothermal assisted immunotherapy. Moreover, the dysfunction of these organelles also stops the production of BMI1 and heat shock protein 70 to further enhance the metastasis inhibition and photothermal therapy, which meanwhile triggers the escape of cytochrome C to cytoplasm, leading to additional apoptosis of tumor cells.

2.
Adv Healthc Mater ; : e2304639, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642071

RESUMEN

The management of oral squamous cell carcinoma (OSCC) poses significant challenges, leading to organ impairment and ineffective treatment of deep-seated tumors, adversely affecting patient prognosis. A cascade nanoreactor that integrates photodynamic therapy (PDT) and chemodynamic therapy (CDT) for comprehensive multimodal OSCC treatment is introduced. Utilizing iron oxide and mesoporous silica, the FMMSH drug delivery system, encapsulating the photosensitizer prodrug δ-aminolevulinic acid (δ-ALA), is developed. Triphenylphosphine (TPP) modification facilitates mitochondrial targeting, while tumor cell membrane (TCM) coating provides homotypic targeting. The dual-targeting δ-ALA@FMMSH-TPP-TCM demonstrate efficacy in eradicating both superficial and deep tumors through synergistic PDT/CDT. Esterase overexpression in OSCC cells triggers δ-ALA release, and excessive hydrogen peroxide in tumor mitochondria undergoes Fenton chemistry for CDT. The synergistic interaction of PDT and CDT increases cytotoxic ROS levels, intensifying oxidative stress and enhancing apoptotic mechanisms, ultimately leading to tumor cell death. PDT/CDT-induced apoptosis generates δ-ALA-containing apoptotic bodies, enhancing antitumor efficacy in deep tumor cells. The anatomical accessibility of oral cancer emphasizes the potential of intratumoral injection for precise and localized treatment delivery, ensuring focused therapeutic agent delivery to maximize efficacy while minimizing side effects. Thus, δ-ALA@FMMSH-TPP-TCM, tailored for intratumoral injection, emerges as a transformative modality in OSCC treatment.

3.
Plant Phenomics ; 6: 0158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524738

RESUMEN

The rate of soybean canopy establishment largely determines photoperiodic sensitivity, subsequently influencing yield potential. However, assessing the rate of soybean canopy development in large-scale field breeding trials is both laborious and time-consuming. High-throughput phenotyping methods based on unmanned aerial vehicle (UAV) systems can be used to monitor and quantitatively describe the development of soybean canopies for different genotypes. In this study, high-resolution and time-series raw data from field soybean populations were collected using UAVs. The RGB (red, green, and blue) and infrared images are used as inputs to construct the multimodal image segmentation model-the RGB & Infrared Feature Fusion Segmentation Network (RIFSeg-Net). Subsequently, the segment anything model was employed to extract complete individual leaves from the segmentation results obtained from RIFSeg-Net. These leaf aspect ratios facilitated the accurate categorization of soybean populations into 2 distinct varieties: oval leaf type variety and lanceolate leaf type variety. Finally, dynamic modeling was conducted to identify 5 phenotypic traits associated with the canopy development rate that differed substantially among the classified soybean varieties. The results showed that the developed multimodal image segmentation model RIFSeg-Net for extracting soybean canopy cover from UAV images outperformed traditional deep learning image segmentation networks (precision = 0.94, recall = 0.93, F1-score = 0.93). The proposed method has high practical value in the field of germplasm resource identification. This approach could lead to the use of a practical tool for further genotypic differentiation analysis and the selection of target genes.

4.
Bioact Mater ; 34: 354-365, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38269307

RESUMEN

Tumor microenvironment (TME), as the "soil" of tumor growth and metastasis, exhibits significant differences from normal physiological conditions. However, how to manipulate the distinctions to achieve the accurate therapy of primary and metastatic tumors is still a challenge. Herein, an innovative nanoreactor (AH@MBTF) is developed to utilize the apparent differences (copper concentration and H2O2 level) between tumor cells and normal cells to eliminate primary tumor based on H2O2-dependent photothermal-chemodynamic therapy and suppress metastatic tumor through copper complexation. This nanoreactor is constructed using functionalized MSN incorporating benzoyl thiourea (BTU), triphenylphosphine (TPP), and folic acid (FA), while being co-loaded with horseradish peroxidase (HRP) and its substrate ABTS. During therapy, the BTU moieties on AH@MBTF could capture excessive copper (highly correlated with tumor metastasis), presenting exceptional anti-metastasis activity. Simultaneously, the complexation between BTU and copper triggers the formation of cuprous ions, which further react with H2O2 to generate cytotoxic hydroxyl radical (•OH), inhibiting tumor growth via chemodynamic therapy. Additionally, the stepwise targeting of FA and TPP guides AH@MBTF to accurately accumulate in tumor mitochondria, containing abnormally high levels of H2O2. As a catalyst, HRP mediates the oxidation reaction between ABTS and H2O2 to yield activated ABTS•+. Upon 808 nm laser irradiation, the activated ABTS•+ performs tumor-specific photothermal therapy, achieving the ablation of primary tumor by raising the tissue temperature. Collectively, this intelligent nanoreactor possesses profound potential in inhibiting tumor progression and metastasis.

5.
Small ; 20(16): e2307310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38039438

RESUMEN

Herein, the vitamin K2 (VK2)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO3 are explored to fabricate a core-shell-corona nanoparticle (VMMFTTC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO3 corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMMFTT would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively. These distinct processes generate different amount of VMMFTT in above two cells followed by 1) TPP-induced accumulation in the mitochondria, 2) THT-mediated effective capture of various signal ions to cut off signal transmission and further inhibit glutathione (GSH) generation, 3) ions catalyzed reactive oxygen species (ROS) production through Fenton reaction, 4) sustained release of VK2 and MA to further enhance the ROS production and GSH depletion, which caused significant apoptosis of tumor cells and additional M2-to-M1 macrophage polarization via different processes of oxidative stress. Moreover, the primary tumor apoptosis further matures surrounding immature dendritic cells and activates T cells to continuously promote the antitumor immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química , Nanopartículas/química , Estrés Oxidativo , Neoplasias/terapia , Inmunoterapia , Mitocondrias/metabolismo , Iones , Línea Celular Tumoral
6.
Anal Chem ; 96(1): 554-563, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38112727

RESUMEN

The efficiency of the enzyme-free toehold-mediated strand displacement (TMSD) technique is often insufficient to detect single-nucleotide polymorphism (SNP) that possesses only single base pair mismatch discrimination. Here, we report a novel dual base pair mismatch strategy enabling TMSD biosensing for SNP detection under enzyme-free conditions when coupled with catalytic hairpin assembly (CHA) and fluorescence resonance energy transfer (FRET). The strategy is based on a competitive strand displacement reaction mechanism, affected by the thermodynamic stability originating from rationally designed dual base pair mismatch, for the specific recognition of mutant-type DNA. In particular, enzyme-free nucleic acid circuits, such as CHA, emerge as a powerful method for signal amplification. Eventually, the signal transduction of this proposed biosensor was determined by FRET between streptavidin-coated 605 nm emission quantum dots (605QDs, donor) and Cy5/biotin hybridization (acceptor, from CHA) when incubated with each other. The proposed biosensor displayed high sensitivity to the mutant target (MT) with a detection concentration down to 4.3 fM and led to high discrimination factors for all types of mismatches in multiple sequence contexts. As such, the application of this proposed biosensor to investigate mechanisms of the competitive strand displacement reaction further illustrates the versatility of our dual base pair mismatch strategy, which can be utilized for the creation of a new class of biosensors.


Asunto(s)
Técnicas Biosensibles , Polimorfismo de Nucleótido Simple , Disparidad de Par Base , Hibridación de Ácido Nucleico , Transferencia Resonante de Energía de Fluorescencia , Biotina , Técnicas Biosensibles/métodos
7.
Waste Manag ; 168: 137-145, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295141

RESUMEN

The increasing demand of textiles and apparel as global economy booms deepens environmental crisis associated with excessive textile waste disposed by landfill or incineration. This work implemented an eco-friendly and sustainable strategy to recycle up to 50 wt% textile waste with marine bio-based calcium alginate fiber into fire-proof fully bio-based composite textile by carding process. Incorporation of intrinsic nonflammable calcium alginate fibers endowed these needle-punching bio-composite felt with excellent inherent flame retardancy and improved safety. Horizontal burning test showed that by mixing with alginate fiber in proper ratio and pattern, extremely flammable cotton fiber and viscose fiber became totally inflammable. Analysis revealed that the generation of CaCO3 char residue and gaseous volatile of H2O inhibited the diffusion of O2 and heat, contributing to the outstanding fire proof performance of produced composite felt. The improved safety was affirmed by cone calorimetry test. It demonstrated limited heat, smoke and toxic volatile compound in the burning, as well as production of CO and CO2. All results showed that a straightforward yet economical method could recycle textile waste fibers into fully bio-based, fireproof and greener products, a potential candidate as fireproof structural filling and insulation materials for household textile or construction material.


Asunto(s)
Alginatos , Diseño Interior y Mobiliario , Textiles , Fibra de Algodón , Calor
8.
Circ Res ; 133(3): 237-251, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37345556

RESUMEN

BACKGROUND: Progressive cardiac fibrosis leads to ventricular wall stiffness, cardiac dysfunction, and eventually heart failure, but the underlying mechanism remains unexplored. PDCD5 (programmed cell death 5) ubiquitously expresses in tissues, including the heart; however, the role of PDCD5 in cardiac fibrosis is largely unknown. Therefore, this study aims at exploring the possible role and underlying mechanisms of PDCD5 in the pathogenesis of cardiac fibrosis. METHODS AND RESULTS: PDCD5 levels were found to be elevated in the serum obtained from patients with cardiac fibrosis, in fibrotic mice heart tissues after myocardial infarction, and in cardiac fibroblasts stimulated by Ang II (angiotensin II)- or TGF-ß1 (transforming growth factor-ß1). Overexpression of PDCD5 in cardiac fibroblasts or treatment with PDCD5 protein reduced the expression of profibrogenic proteins in response to TGF-ß1 stimulation, while knockdown of PDCD5 increased fibrotic responses. It has been demonstrated that SMAD3, a protein that is also known as mothers against decapentaplegic homolog 3, directly upregulated PDCD5 during cardiac fibrosis. Subsequently, the increased PDCD5 promoted HDAC3 (histone deacetylase 3) ubiquitination, thus, inhibiting HDAC3 to reduce fibrotic responses. Fibroblast-specific knock-in of PDCD5 in mice ameliorated cardiac fibrosis after myocardial infarction and enhanced cardiac function, and these protective effects were eliminated by AAV9-mediated HDAC3 overexpression. CONCLUSIONS: The findings of this study demonstrated that PDCD5 is upregulated by SMAD3 during cardiac fibrosis, which subsequently ameliorated progressive fibrosis and cardiac dysfunction through HDAC3 inhibition. Thus, this study suggests that PDCD5 functions as a negative feedback factor on fibrotic signaling pathways and might serve as a potential therapeutic target to suppress the progression of fibrotic responses.


Asunto(s)
Infarto del Miocardio , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Infarto del Miocardio/metabolismo , Corazón , Fibroblastos/metabolismo , Apoptosis , Fibrosis , Proteína smad3/metabolismo , Miocardio/metabolismo
9.
Biochem Biophys Res Commun ; 667: 162-169, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37229825

RESUMEN

OBJECTIVES: Cardiac hypertrophy is the heart's compensatory response stimulated by various pathophysiological factors. However, prolonged cardiac hypertrophy poses a significant risk of progression to heart failure, lethal arrhythmias, and even sudden cardiac death. For this reason, it is crucial to effectively prevent the occurrence and development of cardiac hypertrophy. CMTM is a superfamily of human chemotaxis, which is involved in immune response and tumorigenesis. CMTM3 expressed widely in tissues, including the heart, but its cardiac function remains unclear. This research aims to explore the effect and mechanism of CMTM3 in the development of cardiac hypertrophy. METHODS AND RESULTS: We generated a Cmtm3 knockout mouse model (Cmtm3-/-) as the loss-of-function approach. CMTM3 deficiency induced cardiac hypertrophy and further exacerbated hypertrophy and cardiac dysfunction stimulated by Angiotensin Ⅱ infusion. In Ang Ⅱ-infusion stimulated hypertrophic hearts and phenylephrine-induced hypertrophic neonatal cardiomyocytes, CMTM3 expression significantly increased. However, adenovirus-mediated overexpression of CMTM3 inhibited the hypertrophy of rat neonatal cardiomyocytes induced by PE stimulation. In terms of mechanism, RNA-seq data revealed that Cmtm3 knockout-induced cardiac hypertrophy was related to MAPK/ERK activation. In vitro, CMTM3 overexpression significantly inhibited the increased phosphorylation of p38 and ERK induced by PE stimulation. CONCLUSIONS: CMTM3 deficiency induces cardiac hypertrophy and aggravates hypertrophy and impaired cardiac function stimulated by angiotensin Ⅱ infusion. The expression of CMTM3 increases during cardiac hypertrophy, and the increased CMTM3 can inhibit further hypertrophy of cardiomyocytes by inhibiting MAPK signaling. Thus, CMTM3 plays a negative regulatory effect in the occurrence and development of cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Quimiocinas , Proteínas con Dominio MARVEL , Animales , Ratones , Cardiomegalia/metabolismo , Proteínas con Dominio MARVEL/genética , Proteínas con Dominio MARVEL/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Técnicas de Inactivación de Genes , Angiotensina II/metabolismo , Miocitos Cardíacos/metabolismo , Regulación hacia Arriba , Fenilefrina , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación , Corazón
10.
Acta Biomater ; 166: 485-495, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37121369

RESUMEN

The excessive copper in tumor cells is crucial for the growth and metastasis of malignant tumor. Herein, we fabricated a nanohybrid to capture, convert and utilize the overexpressed copper in tumor cells, which was expected to achieve copper dependent photothermal damage of primary tumor and copper-deficiency induced metastasis inhibition, generating accurate and effective tumor treatment. The nanohybrid consistsed of 3-azidopropylamine, 4-ethynylaniline and N-aminoethyl-N'-benzoylthiourea (BTU) co-modified gold nanoparticles (AuNPs). During therapy, the BTU segment would specifically chelate with copper in tumor cells after endocytosis to reduce the intracellular copper content, causing copper-deficiency to inhibit the vascularization and tumor migration. Meanwhile, the copper was also rapidly converted to be cuprous by BTU, which further catalyzed the click reaction between azido and alkynyl on the surface of AuNPs, resulting in on-demand aggregation of these AuNPs. This process not only in situ generated the photothermal agent in tumor cells to achieve accurate therapy avoiding unexpected damage, but also enhanced its retention time for sustained photothermal therapy. Both in vitro and in vivo results exhibited the strong tumor inhibition and high survival rate of tumor-bearing mice after application of our nanohybrid, indicating that this synergistic therapy could offer a promising approach for malignant tumor treatment. STATEMENT OF SIGNIFICANCE: The distinctive excessive copper in tumor cells is crucial for the growth and metastasis of tumor. Therefore, we fabricated intelligent gold nanoparticles to simultaneously response and reverse this tumorigenic physiological microenvironment for the synergistic therapy of malignant tumor. In this study, for the first time we converted and utilized the overexpressed Cu2+ in tumor cells to trigger intracellular click chemistry for tumor-specific photothermal therapy, resulting in accurate damage of primary tumor. Moreover, we effectively manipulated the content of Cu2+ in tumor cells to suppress the migration and vascularization of malignant tumor, resulting in effective metastasis inhibition.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Animales , Ratones , Oro/farmacología , Oro/química , Cobre/farmacología , Cobre/química , Terapia Fototérmica , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Química Clic , Nanopartículas/química , Neoplasias/patología , Línea Celular Tumoral , Microambiente Tumoral
11.
Biomater Sci ; 11(7): 2590-2602, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36804554

RESUMEN

Tumor recurrence caused by metastasis is a major cause of death for patients. Thus, a strategy to manipulate the circulating tumor cells (CTCs, initiators of tumor metastasis ) and eliminate them along with the primary tumor has significant clinical significance for malignant tumor therapy. In this study, a magnet-NIR-pH multi-responsive nanosheet (Fe3O4@SiO2-GO-PEG-FA/AMP-DOX, FGPFAD) was fabricated to capture CTCs in circulation, then magnetically transport them to the primary tumor, and finally perform NIR-dependent photothermal therapy as well as acidic-environment-triggered chemotherapy to destroy both the CTCs and the primary tumor. The FGPFAD nanosheet consists of silica-coated ferroferric oxide nanoparticles (Fe3O4@SiO2, magnetic targeting agent), graphene oxide (GO, photothermal therapy agent), polyethylene glycol (PEG, antifouling agent for sustained circulation), folic acid (FA, capturer of CTCs) and antimicrobial-peptide-conjugated doxorubicin (AMP-DOX, agent for chemotherapy), in which the AMP-DOX was bound to the FGPFAD nanosheet via a cleavable Schiff base to achieve acidic-environment-triggered drug release for tumor-specific chemotherapy. Both in vitro and in vivo results indicated that the effective capture and magnetically guided transfer of CTCs to the primary tumor, as well as the multimodal tumor extermination performed by our FGPFAD nanosheet, significantly inhibited the primary tumor and its metastasis.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Células Neoplásicas Circulantes , Humanos , Dióxido de Silicio , Doxorrubicina/farmacología , Fototerapia/métodos , Polietilenglicoles , Línea Celular Tumoral
12.
Front Physiol ; 13: 1047909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467681

RESUMEN

Background: Hemorrhagic shock (HS) is a type of hypovolemic shock characterized by hemodynamic instability, tissue hypoperfusion and cellular hypoxia. In pathophysiology, the gradual accumulation of reactive oxygen species (ROS) damages the mitochondria, leading to irreversible cell damage and the release of endogenous damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (MTDs), eventually triggering the inflammatory response. The novel mitochondria-targeted antioxidant SkQ1 (Visomitin) effectively eliminate excessive intracellular ROS and exhibits anti-inflammatory effects; however, the specific role of SkQ1 in HS has not yet been explicated. Methods and results: A 40% fixed-blood-loss HS rat model was established in this study. Transmission electron microscopy showed that after HS, the myocardial mitochondrial ultrastructure was damaged and the mtDNA release in circulation was increased and the differentially expressed genes were significantly enriched in mitochondrial and ROS-related pathways. Mitochondria-targeted antioxidant SkQ1 attenuated the increased ROS induced by HS in myocardial tissues and by oxygen-glucose deprivation (OGD) in cardiomyocytes. Ultrastructurally, SkQ1 protected the myocardial mitochondrial structure and reduced the release of the peripheral blood mtDNA after HS. RNA-seq transcriptome analysis showed that 56.5% of the inflammation-related genes, which altered after HS, could be significantly reversed after SkQ1 treatment. Moreover, ELISA indicated that SkQ1 significantly reversed the HS-induced increases in the TNF-α, IL-6, and MCP-1 protein levels in rat peripheral blood. Conclusion: HS causes damage to the rat myocardial mitochondrial structure, increases mtDNA release and ROS contents, activates the mitochondrial and ROS-related pathways, and induces systemic inflammatory response. The mitochondrial antioxidant SkQ1 can improve rat myocardial mitochondria ultrastructure, reduce mtDNA and ROS contents, and decrease inflammation by protecting myocardial mitochondria, thereby playing a novel protective role in HS.

13.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232886

RESUMEN

Cultivated tomato (Solanum lycopersicum) is bred for fruit production in optimized environments, in contrast to harsh environments where their ancestral relatives thrive. The process of domestication and breeding has profound impacts on the phenotypic plasticity of plant development and the stress response. Notably, the alternative splicing (AS) of precursor message RNA (pre-mRNA), which is one of the major factors contributing to transcriptome complexity, is responsive to developmental cues and environmental change. To determine a possible association between AS events and phenotypic plasticity, we investigated environment-responsive AS events in the inflorescences of cultivated tomato and its ancestral relatives S. pimpinellifolium. Despite that similar AS frequencies were detected in the cultivated tomato variety Moneymaker and two S. pimpinellifolium accessions under the same growth conditions, 528 genes including splicing factors showed differential splicing in the inflorescences of plants grown in open fields and plastic greenhouses in the Moneymaker variety. In contrast, the two S. pimpinellifolium accessions, LA1589 and LA1781, had 298 and 268 genes showing differential splicing, respectively. Moreover, seven heat responsive genes showed opposite expression patterns in response to changing growth conditions between Moneymaker and its ancestral relatives. Accordingly, there were eight differentially expressed splice variants from genes involved in heat response in Moneymaker. Our results reveal distinctive features of AS events in the inflorescences between cultivated tomato and its ancestral relatives, and show that AS regulation in response to environmental changes is genotype dependent.


Asunto(s)
Solanum lycopersicum , Solanum , Empalme Alternativo , Inflorescencia , Fitomejoramiento , Plásticos , Precursores del ARN , Factores de Empalme de ARN/genética , Solanum/genética
14.
Eur J Med Res ; 27(1): 199, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217184

RESUMEN

OBJECTIVES: The aim of this study was to investigate serum biomarkers linked to primary Sjögren's syndrome (pSS)-associated interstitial lung disease (ILD). METHODS: 69 pSS patients were consecutively enrolled and evaluated via quantitative ILD scoring based on high-resolution computed tomography (HRCT). Biomarkers of interest were assessed by multiplex enzyme-linked immunosorbent assays (ELISAs). RESULTS: Among consecutively enrolled patients with pSS, the presence of pSS-ILD was 50% based on the presence of radiographically defined interstitial lung abnormalities (ILA) meeting specified criteria for mild/moderate (ILA 2) or severe (ILA 3) disease. Age, immunoglobulin M (IgM), C-reactive protein (CRP), and serum levels of eotaxin/CCL11, Krebs von den Lungen-6 (KL-6), TNFα, and TGFα were significantly higher in the combined pSS-ILD group (ILA 2 + ILA 3) than in the pSS-no-ILD and pSS-indeterminate ILD groups (ILA 0 and ILA 1, respectively) in unadjusted analyses (p < 0.05 for all variables). A binary logistic regression model revealed that disease duration and KL-6 levels were associated with the presence of pSS-ILD (p < 0.05). Complementary least absolute shrinkage and selection operator (LASSO) modeling showed that age, KL-6, and TNF-α effectively differentiated pSS-ILD (ILA 2 + ILA3) from pSS without ILD (ILA 0 + ILA 1), with an area under the curve (AUC) of 0.883 (p value < 0.0001). CONCLUSIONS: Patient age, disease duration, and serum levels of both KL-6 and TNFα were the most discriminating factors associated with the presence of ILD in our pSS patients. Higher levels of CRP, IgM, eotaxin, TGFα, and TNFα should also prompt the search for occult as well as clinically evident lung involvement based on statistically significant univariate associations with pSS-ILD. CLINICAL TRIAL REGISTRATION: None.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Síndrome de Sjögren , Biomarcadores , Proteína C-Reactiva , Humanos , Inmunoglobulina M , Pulmón , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/etiología , Síndrome de Sjögren/complicaciones , Factor de Crecimiento Transformador alfa , Factor de Necrosis Tumoral alfa
15.
Front Immunol ; 13: 987723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189284

RESUMEN

Background: Mucin 5AC (MUC5AC) and mucin 5B (MUC5B) are the major components of airway mucins. The expression levels of MUC5AC and MUC5B are related to connective tissue disease-associated interstitial lung disease (CTD-ILD) in the promoter region of MUC5AC and MUC5B and the relevant bronchoalveolar lavage fluid. However, the serum protein levels of MUC5AC and MUC5B have not been tested in CTD-ILD patients. In this study, we tested the serum levels of MUC5AC and MUC5B proteins in CTD-ILD patients and assessed their relationship with the occurrence and development of ILD. Methods: Serum samples were obtained from 168 CTD and 80 healthy participants from the First Affiliated Hospital of Xiamen University. The serum levels of MUC5AC and MUC5B proteins were measured by enzyme-linked immunosorbent assay. Results: Of the 168 individuals with CTD, 70 had primary Sjögren's syndrome (pSS), 64 had systemic sclerosis (SSc), and 34 had polymyositis/dermatomyositis (PM/DM). There were 116 cases with concurrent ILD; ILD scores were 1 (n=23), 2 (n=41), and 3 (n=52). Serum MUC5AC and MUC5B protein levels were considerably higher in CTD-ILD than CTD-only individuals or healthy controls (both p<0.005). Among the CTD subgroups, MUC5AC was higher in individuals with concurrent ILD than in those without ILD (all p<0.05). MUC5AC was positively correlated with ILD severity in all three CTD subgroups (all R>0.47 and all p<0.05). The MUC5B levels varied substantially between SSc and SSc patients with concurrent ILD (p=0.032) and were related to ILD severity only in PM/DM patients (R=0.346 and p=0.045). Conclusion: MUC5AC is correlated with the occurrence and development of ILD, while MUC5B is associated with ILD diagnosis and severity in CTD subgroups. Serum MUC5AC levels present a definite diagnostic utility for CTD-ILD and as proxies for its severity.


Asunto(s)
Enfermedades del Tejido Conjuntivo , Dermatomiositis , Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Proteínas Sanguíneas , Enfermedades del Tejido Conjuntivo/diagnóstico , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/etiología , Mucina 5AC , Mucina 5B , Esclerodermia Sistémica/complicaciones
16.
Langmuir ; 38(41): 12491-12498, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36200299

RESUMEN

Petroleum-based synthetic flame-proof fiber releases toxic volatile organic compounds in thermal decomposition process and has other problems, like tickling feeling and high density. A natural polysaccharide, calcium alginate, is an intrinsic fire-resistant biodegradable material, but its limited mechanical performance prevents it from being a practical flame-retardant fabric. To address this problem, Na2CO3 was doped into alginate spinning solution to obtain in situ generating CaCO3 nanoparticle-reinforced alginate fiber by microfluidic spinning technique. Comparative analysis illustrated that incorporation of 0.50% Na2CO3 into the fiber greatly improved its mechanical performance; meanwhile, in situ generated CaCO3 nanoparticles also throttled oxygen and heat flow in burning, endowing the fiber with excellent flame retardancy. The prepared composite fiber released less heat, smoke, and toxic volatile organic compounds in burning, which reduced the fire hazard. The formed residue char and pyrolysis products functioned as the physical barrier and displayed a synergistic effect to inhibit oxygen and heat transmission and impede the further combustion. All of the results demonstrate that the obtained fiber exhibits a good mechanical and flame-retardant performance, making it an ideal candidate as a fire-protection textile.


Asunto(s)
Retardadores de Llama , Nanopartículas , Petróleo , Compuestos Orgánicos Volátiles , Alginatos/química , Oxígeno , Humo
17.
Front Aging Neurosci ; 14: 976164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072479

RESUMEN

Background: Increased social distance is one of the manifestations of social impairment. Chronic low back pain (CLBP) is one of factors associated with increased social distance and social withdrawal. Exercise therapy is an effective means to social impairment. However, whether exercise could reduce social distance in patients with CLBP remains unknown. This study aimed to investigate the effect of exercise on social distance in middle-aged and elderly patients with CLBP. Methods: The longitudinal intervention recruited 29 middle-aged and elderly patients with CLBP from various communities in Yangpu District, Shanghai, China. The participants received exercise intervention for 8 weeks. The assessments were conducted before and after the intervention, including social distance, pain intensity, unpleasantness of pain, Roland-Morris Questionnaire (RMDQ), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS). Intention to treat analysis was performed. Results: After the 8-week exercise intervention, the social distance of patients with CLBP was shorter than that before intervention and showed significant difference (p < 0.05). The scores of pain intensity, unpleasantness of pain, RMDQ, SAS, and SDS also decreased and were significantly different between pre- and post-intervention (p < 0.05). In addition, the social distance, pain intensity, unpleasantness of pain, RMDQ, SAS, and SDS scores of the moderate CLBP group decreased more after the intervention compared with those of the mild CLBP group. Conclusion: The 8-week exercise intervention cannot only shorten the social distance in middle-aged and elderly patients with CLBP but also relieve pain, disability, and negative emotions.

18.
Polymers (Basel) ; 14(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35956740

RESUMEN

As a natural linear polysaccharide, alginate can be gelled into calcium alginate fiber and exploited for functional material applications. Owing to its high hygroscopicity, biocompatibility, nontoxicity and non-flammability, calcium alginate fiber has found a variety of potential applications. This article gives a comprehensive overview of research on calcium alginate fiber, starting from the fabrication technique of wet spinning and microfluidic spinning, followed by a detailed description of the moisture absorption ability, biocompatibility and intrinsic fire-resistant performance of calcium alginate fiber, and briefly introduces its corresponding applications in biomaterials, fire-retardant and other advanced materials that have been extensively studied over the past decade. This review assists in better design and preparation of the alginate bio-based fiber and puts forward new perspectives for further study on alginate fiber, which can benefit the future development of the booming eco-friendly marine biomass polysaccharide fiber.

19.
Plant Direct ; 6(8): e436, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949951

RESUMEN

Although photosynthetic multiprotein complexes have received major attention, our knowledge about the assembly of these proteins into functional complexes in plants is still limited. In the present study, we have identified a chlorophyll-deficient mutant, pale-green leaf 1 (pgl1), in rice that displays abnormally developed chloroplasts. Map-based cloning of this gene revealed that OsPGL1 encodes a chloroplast targeted protein homologous to the 54-kDa subunit of the signal recognition particle (cpSRP54). Immunoblot analysis revealed that the accumulation of the PSI core proteins PsaA and PsaB, subunits from the ATP synthase, cytochrome, and light-harvesting complex (LHC) is dramatically reduced in pgl1. Blue native gel analysis of thylakoid membrane proteins showed the existence of an extra band in the pgl1 mutant, which located between the dimeric PSII/PSI-LHCI and the monomeric PSII. Immunodetection after 2D separation indicated that the extra band consists of the proteins from the PSI core complex. Measurements of chlorophyll fluorescence at 77 K further confirmed that PSI, rather than PSII, was primarily impaired in the pgl1 mutant. These results suggest that OsPGL1 might act as a molecular chaperone that is required for the efficient assembly and specific integration of the peripheral LHCI proteins into the PSI core complex in rice.

20.
Cell Death Dis ; 13(7): 634, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864106

RESUMEN

Hypoxic pulmonary hypertension (PH) is a progressive disease characterized by hyper-proliferation of pulmonary vascular cells including pulmonary artery smooth muscle cells (PASMCs) and can lead to right heart failure and early death. Selective degradation of mitochondria by mitophagy during hypoxia regulates mitochondrial functions in many cells, however, it is not clear if mitophagy is involved in the pathogenesis of hypoxic PH. By employing the hypoxic mitophagy receptor Fundc1 knockout (KO) and transgenic (TG) mouse models, combined hypoxic PH models, the current study found that mitophagy is actively involved in hypoxic PH through regulating PASMC proliferation. In the pulmonary artery medium from hypoxic PH mice, mitophagy was upregulated, accompanied with the increased active form of FUNDC1 protein and the enhanced binding affinity of FUNDC1 with LC3B. In PASMCs, overexpression of FUNDC1 increased mitophagy and cell proliferation while knockdown of FUNDC1 inhibited hypoxia-induced mitophagy and PASMC proliferation. Stimulation of mitophagy by FUNDC1 in PASMCs elevated ROS production and inhibited ubiquitination of hypoxia inducible factor 1α (HIF1α), and inhibition of mitophagy by FUNDC1 knockdown or knockout abolished hypoxia-induced ROS-HIF1α upregulation. Moreover, Fundc1 TG mice developed severe hemodynamics changes and pulmonary vascular remodeling, and Fundc1 KO mice were much resistant to hypoxic PH. In addition, intraperitoneal injection of a specific FUNDC1 peptide inhibitor to block mitophagy ameliorated hypoxic PH. Our results reveal that during hypoxic PH, FUNDC1-mediated mitophagy is upregulated which activates ROS-HIF1α pathway and promotes PASMC proliferation, ultimately leads to pulmonary vascular remodeling and PH.


Asunto(s)
Hipertensión Pulmonar , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteínas de la Membrana , Proteínas Mitocondriales , Mitofagia , Animales , Proliferación Celular , Células Cultivadas , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/metabolismo , Miocitos del Músculo Liso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Remodelación Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...