Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36766206

RESUMEN

Plant fiber/plastic composites (PPCs) have been widely used in food contact materials (FCMs) for many benefits, such as their claimed better environmental footprint compared to conventional plastics. However, their safety is still not fully understood and must be comprehensively evaluated. Non-volatiles extracted from six PPCs with different plant fibers and polymer matrices were characterized by employing ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry in combination with various spectral libraries and manual elucidation, taking into account spectral similarity and characteristic product ions. A total of 115 compounds were tentatively identified, 50 of which were oligomers or their derivatives from the sample with polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) as the polymer matrix, and some of them were Cramer rules class III substances based on the threshold of toxicological concern (TTC). Seven reaction products between PLA and PBAT monomers, as well as four derivatives of melamine, were elucidated and well detailed for the first time. In addition, bisphenol S was detected in all samples even though its origin remains to be further explored. Isoprothiolane, as an insecticide and fungicide used to control a range of rice pests, was identified in the sample with rice husk as fillers, experimentally confirming the presence of agrochemicals in samples containing plant fibers.

2.
J Hazard Mater ; 424(Pt B): 127417, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673397

RESUMEN

Enzymes that can decompose synthetic plastics such as polyethylene terephthalate (PET) are urgently needed. Still, a bottleneck remains due to a lack of techniques for detecting and sorting environmental microorganisms with vast diversity and abundance. Here, we developed a fluorescence-activated droplet sorting (FADS) pipeline for high-throughput screening of PET-degrading microorganisms or enzymes (PETases). The pipeline comprises three steps: generation and incubation of droplets encapsulating single cells, picoinjection of fluorescein dibenzoate (FDBz) as the fluorogenic probe, and screening of droplets to obtain PET-degrading cells. We characterized critical factors associated with this method, including specificity and sensitivity for discriminating PETase from other enzymes. We then optimized its performance and compatibility with environmental samples. The system was used to screen a wastewater sample from a PET textile mill. We successfully obtained PET-degrading species from nine different genera. Moreover, two putative PETases from isolates Kineococcus endophyticus Un-5 and Staphylococcus epidermidis Un-C2-8 were genetically derived, heterologously expressed, and preliminarily validated for PET-degrading activities. We speculate that the FADS pipeline can be widely adopted to discover new plastic-degrading microorganisms and enzymes in various environments and may be utilized in the directed evolution of degrading enzymes using synthetic biology.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Fluorescencia , Plásticos , Biología Sintética
3.
J Colloid Interface Sci ; 582(Pt A): 112-123, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32814219

RESUMEN

Multifunctional cotton fabrics have attracted significant attention as next-generation wearable materials. Herein, we report a facile method for the fabrication of flexible and wearable cotton fabrics with ultra-high electromagnetic interference (EMI) shielding, antibacterial, and superhydrophobic properties. Cotton fabrics were first coated chemically with silver nanoparticles using polydopamine as adhesive and then with hydrophobic polydimethylsiloxane or polyimide. The introduction of polydopamine significantly increased the bond between silver nanoparticles and cotton fibers, thereby preventing silver nanoparticles from falling off the surface. The composite fabrics exhibited a high conductivity of ~1000 S/cm, and their EMI shielding effectiveness increased up to ~110 dB. The composite fabrics exhibited excellent self-cleaning performance and acid-alkali corrosion resistance because of their superhydrophobicity. Notably, the fabric composites showed a significant antibacterial action against Staphylococcus aureus and Escherichia coli.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Fibra de Algodón , Interacciones Hidrofóbicas e Hidrofílicas , Microondas , Polímeros , Plata/farmacología
4.
Int J Biol Macromol ; 140: 1175-1182, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465799

RESUMEN

Traditional superhydrophobic cotton fabrics (SCFs) for oil/water separation were usually fabricated by surface coating with inorganic nanoparticles combined with nonrenewable and nonbiodegradable or even toxic fossil-based chemicals, which would lead to secondary environmental pollution after their lifetime. In this study, we report robust, nanoparticle-free, fluorine-free SFC, which was prepared by acid etching followed by surface coating with epoxidized soybean oil resin (CESO) and subsequent modification with stearic acid (STA). No toxic compound and no nanoparticle were included within the SCF and all the raw materials including cotton fabric, CESO and STA are biodegradable and derived from biological resources. The SCF showed excellent mechanical stability and chemical/environmental resistances. The superhydrophobicity of the SFC survived from mechanical abrasion, tape peeling, ultrasonication, solvent erosion and low/high temperature exposure. The SCF also exhibited good acid/alkali resistance with contact angle over 150° toward different pH water droplets. Moreover, the SCF could efficiently separate oil/water mixtures with efficiency above 97.9% and the superhydrophobicity remained after reusing for at least 10 times. The fully biological-derived SCF with excellent mechanical and chemical resistances exhibit great potential for separation of oil/water mixtures.


Asunto(s)
Fibra de Algodón , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Aceite de Soja/química , Agua/química , Ácidos Decanoicos/química , Ácidos Dicarboxílicos/química , Temperatura , Humectabilidad
5.
Int J Biol Macromol ; 137: 215-223, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31255620

RESUMEN

Poly(butylene succinate-co-cyclohexane dimethanol succinate) (P(BS-co-CHDMS)) and poly(butylene succinate-co-butanediol cyclohexanedicarboxylic acid) (P(BS-co-BCHDA)) were catalytically degraded by Candida antarctica lipase Novozyme 435 (N435) in CHCl3 and THF. The results indicated that the degradation rate was P(BS-co-CHDMS) > P(BS-co-BCHDA) > poly(butylene succinate) (PBS). The degradation rate of copolyesters was higher in CHCl3 than in THF, the highest degradation rate of 67% being obtained for P(BS-co-CHDMS). Hence, the CHCl3 solvent is more suitable for the enzyme-catalytic degradation of copolyesters, since the lipase can easier recognize the butylene succinate (BS-), (butanediol cyclohexanedicarboxylic acid) (BCA-), and (cyclohexane dimethanol succinate-type) (CMS-type) ester bonds in this solvent. Moreover, it can recognize the CMS-type ester bonds with a higher specificity than the (butanediol cyclohexanedicarboxylic acid type) (BCA-type) ester bonds. Molecular simulation results indicated that the structure of the lipase was stable in CHCl3 and THF. However, CHCl3 proved to be more suitable for a stable activity of the enzyme. The active pocket contains acyl-binding hydrophilic residues which are recognized by the substrate. The increase in the content of saturated cycles can increase the hydrophobicity of the substrate and thus, the amount of substrate bond to enzyme active site is increased, which facilitates the enzymatic degradation of copolyesters.


Asunto(s)
Lipasa/química , Poliésteres/química , Solventes/química , Sitios de Unión , Catálisis , Dominio Catalítico , Enzimas Inmovilizadas , Proteínas Fúngicas , Hidrólisis , Simulación de Dinámica Molecular , Estructura Molecular , Polímeros
6.
Polymers (Basel) ; 11(3)2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30960399

RESUMEN

In this study, first, a green and efficient NaOH/urea aqueous solution system was used to dissolve cellulose. Second, the resulting solution was mixed with sodium montmorillonite. Third, a cellulose/montmorillonite aerogel with a three-dimensional porous structure was prepared via a sol-gel process, solvent exchange and freeze-drying. The viscoelastic analysis results showed that the addition of montmorillonite accelerated the sol-gel process in the cellulose solution. During this process, montmorillonite adhered to the cellulose substrate surface via hydrogen bonding and then became embedded in the pore structure of the cellulose aerogel. As a result, the pore diameter of the aerogel decreased and the specific surface area of the aerogel increased. Furthermore, the addition of montmorillonite increased the compressive modulus and density of the cellulose aerogel and reduced volume shrinkage during the preparation process. In addition, the oil/water adsorption capacities of cellulose aerogels and cellulose/montmorillon aerogels were investigated.

8.
Int J Biol Macromol ; 118(Pt A): 347-356, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29933000

RESUMEN

The difference of enzymatic degradation behavior between Poly (butylene succinate-co-diethylene glycol succinate) (PBS-co-DEGS) and Poly (butylene succinate-co-butylene diglycolic acid) (PBS-co-BDGA) was studied in a Tetrahydrofuran (THF)/toluene mixed system by Novozym 435 (N435, immobilized Candida Antarctica lipase supported on acrylic resin) catalysis for 30 h. These two copolymers (modified with alcoholic acid by ether linkage) were synthesized by melt polycondensation and characterized by 1H NMR. The average molecular weight and thermal property before and after degradation were determined by gel permeation chromatography (GPC) and thermogravimetric analysis (TGA), respectively. Results revealed that end-chain degradation of DEG20 (20% content diethylene glycol of diols) and intramolecular random degradation of DGA20 (20% content diglycolic acid of diacids) both occurred at the same time from 0 h to 12 h. TGA curves show that after degradation by N435, the T-5% of both copolymers decreased from about 300 °C to below 210 °C. In degradation products (linear and cyclic oligomers, no monomer was appeared below 10 degree of polymerization. According to the molecular docking results, the free binding energy between PC lipase and substrate was in the order of BDGAB < DEGSDEG < BSDEG < BSB. Thus, the enzymatic degradability of PBS-co-DEGS is more effective than that of PBS-co-BDGA.


Asunto(s)
Alquenos/química , Materiales Biocompatibles/química , Polímeros/química , Succinatos/química , Butileno Glicoles/química , Catálisis , Glicoles de Etileno/química , Simulación del Acoplamiento Molecular , Peso Molecular , Poliésteres/química , Polimerizacion
9.
Polymers (Basel) ; 10(6)2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-30966656

RESUMEN

Due to its excellent performance, aerogel is considered to be an especially promising new material. Cellulose is a renewable and biodegradable natural polymer. Aerogel prepared using cellulose has the renewability, biocompatibility, and biodegradability of cellulose, while also having other advantages, such as low density, high porosity, and a large specific surface area. Thus, it can be applied for many purposes in the areas of adsorption and oil/water separation, thermal insulation, and biomedical applications, as well as many other fields. There are three types of cellulose aerogels: natural cellulose aerogels (nanocellulose aerogels and bacterial cellulose aerogels), regenerated cellulose aerogels, and aerogels made from cellulose derivatives. In this paper, more than 200 articles were reviewed to summarize the properties of these three types of cellulose aerogels, as well as the technologies used in their preparation, such as the sol⁻gel process and gel drying. In addition, the applications of different types of cellulose aerogels were also introduced.

10.
Polymers (Basel) ; 9(8)2017 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30970999

RESUMEN

Bamboo flour (BF) was grafted onto lactide (LA) in the molten state using stannous octoate as a catalyst to form BF-g-LA. Then, polylactic acid (PLA) was blended with BF (PLA/BF, 85/15 wt %) to prepare PLA/BF/BF-g-LA composites using BF-g-LA as a compatibilizer. The grafting rate of BF was characterized using infrared testing and elemental analysis. To investigate the effect of BF-g-LA on the performance of PLA/BF/BF-g-LA composites, the phase morphology, thermal stability, and mechanical properties of the composites were characterized using scanning electron microscopy, thermogravimetric analysis, and universal material testing, respectively. The addition of BF-g-LA improved the interface compatibility between PLA and BF. When the BF-g-LA content was 2 phr, the tensile and impact strengths of PLA/BF/BF-g-LA composites were 55.3 MPa and 9.56 kJ/m2, representing 30% and 27% increases, respectively, relative to corresponding values for PLA/BF composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...