Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Appl Physiol (1985) ; 137(2): 374-381, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38961825

RESUMEN

The sympathetic nervous system is critical for regulating blood pressure (BP) via the arterial baroreflex and sympathetic transduction in the peripheral vasculature. These mechanisms interact, and both may be altered with aging and impacted by menopause. Although age-related decreases in sympathetic transduction have been demonstrated in women, it remains unclear whether sympathetic baroreflex sensitivity (BRS) is impaired in postmenopausal women (POST). We tested the hypothesis that sympathetic BRS would be enhanced in POST compared with premenopausal women (PRE). We examined beat-by-beat BP and muscle sympathetic nerve activity (MSNA) in 19 PRE (22 ± 2 yr, 22 ± 3 kg/m2) and 12 POST (57 ± 5 yr, 24 ± 2 kg/m2) during 10 min of rest. Spontaneous sympathetic BRS was quantified as the slope of a linear regression between MSNA burst incidence and diastolic BP. Sympathetic transduction to mean arterial pressure (MAP) for the 10 cardiac cycles following spontaneous MSNA bursts was assessed via signal averaging method. Resting MAP was similar (PRE: 82 ± 8 vs. POST: 85 ± 8 mmHg, P = 0.43), whereas resting MSNA was elevated in POST (PRE: 10 ± 6 vs. POST: 45 ± 16 bursts/100 heart beats, P < 0.0001). Spontaneous sympathetic BRS was enhanced in POST (PRE: -2.0 ± 1.2 vs. POST: -5.2 ± 1.9 bursts/beat/mmHg, P < 0.0005). Sympathetic transduction to MAP was attenuated in POST (time: P < 0.001, group: P < 0.001, interaction: P < 0.01). These data suggest that sympathetic BRS may be enhanced in POST. Consistent with recent hypotheses, enhanced sensitivity of the arterial baroreflex's neural arc may signify a compensatory response to reduced efficiency of the peripheral arterial baroreflex arc (i.e., sympathetic transduction) to preserve BP buffering capacity.NEW & NOTEWORTHY Studies examining sympathetic baroreflex function with aging remain equivocal, with some studies showing an increase, decrease, or no change in sympathetic baroreflex sensitivity (BRS) in older adults compared with younger adults. With aging, women experience unique physiological changes due to menopause that influence autonomic function. For the first time, we show that postmenopausal women exhibit a greater sympathetic BRS compared with young premenopausal women.


Asunto(s)
Barorreflejo , Presión Sanguínea , Posmenopausia , Sistema Nervioso Simpático , Humanos , Barorreflejo/fisiología , Femenino , Sistema Nervioso Simpático/fisiología , Posmenopausia/fisiología , Persona de Mediana Edad , Presión Sanguínea/fisiología , Adulto , Adulto Joven , Frecuencia Cardíaca/fisiología , Premenopausia/fisiología , Presión Arterial/fisiología
2.
Auton Neurosci ; 254: 103182, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805791

RESUMEN

Rodent studies demonstrated specialized sodium chloride (NaCl) sensing neurons in the circumventricular organs, which mediate changes in sympathetic nerve activity, arginine vasopressin, thirst, and blood pressure. However, the neural pathways involved in NaCl sensing in the human brain are incompletely understood. The purpose of this pilot study was to determine if acute hypernatremia alters the functional connectivity of NaCl-sensing regions of the brain in healthy young adults. Resting-state fMRI scans were acquired in 13 participants at baseline and during a 30 min hypertonic saline infusion (HSI). We used a seed-based approach to analyze the data, focusing on the subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT) as regions of interest (ROIs). Blood chemistry and perceived thirst were assessed pre- and post-infusion. As expected, serum sodium increased from pre- to post-infusion in the HSI group. The primary finding of this pilot study was that the functional connectivity between the SFO and a cluster within the OVLT increased from baseline to the late-phase of the HSI. Bidirectional connectivity changes were found with cortical regions, with some regions showing increased connectivity with sodium-sensing regions while others showed decreased connectivity. Furthermore, the functional connectivity between the SFO and the posterior cingulate cortex (a control ROI) did not change from baseline to the late-phase of the HSI. This finding indicates a distinct response within the NaCl sensing network in the human brain specifically related to acute hypernatremia that will need to be replicated in large-scale studies.


Asunto(s)
Hipernatremia , Imagen por Resonancia Magnética , Humanos , Proyectos Piloto , Hipernatremia/fisiopatología , Masculino , Femenino , Adulto , Adulto Joven , Solución Salina Hipertónica/farmacología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Órgano Subfornical/efectos de los fármacos , Órgano Subfornical/fisiología , Organum Vasculosum/fisiología , Organum Vasculosum/fisiopatología , Sed/fisiología , Cloruro de Sodio/administración & dosificación , Cloruro de Sodio/farmacología
3.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38676110

RESUMEN

In urban areas like Chicago, daily life extends above ground level due to the prevalence of high-rise buildings where residents and commuters live and work. This study examines the variation in fine particulate matter (PM2.5) concentrations across building stories. PM2.5 levels were measured using PurpleAir sensors, installed between 8 April and 7 May 2023, on floors one, four, six, and nine of an office building in Chicago. Additionally, data were collected from a public outdoor PurpleAir sensor on the fourteenth floor of a condominium located 800 m away. The results show that outdoor PM2.5 concentrations peak at 14 m height, and then decline by 0.11 µg/m3 per meter elevation, especially noticeable from midnight to 8 a.m. under stable atmospheric conditions. Indoor PM2.5 concentrations increase steadily by 0.02 µg/m3 per meter elevation, particularly during peak work hours, likely caused by greater infiltration rates at higher floors. Both outdoor and indoor concentrations peak around noon. We find that indoor and outdoor PM2.5 are positively correlated, with indoor levels consistently remaining lower than outside levels. These findings align with previous research suggesting decreasing outdoor air pollution concentrations with increasing height. The study informs decision-making by community members and policymakers regarding air pollution exposure in urban settings.


Asunto(s)
Contaminación del Aire Interior , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , Chicago , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis
4.
Am J Physiol Heart Circ Physiol ; 326(1): H238-H255, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37999647

RESUMEN

In cardiovascular research, sex and gender have not typically been considered in research design and reporting until recently. This has resulted in clinical research findings from which not only all women, but also gender-diverse individuals have been excluded. The resulting dearth of data has led to a lack of sex- and gender-specific clinical guidelines and raises serious questions about evidence-based care. Basic research has also excluded considerations of sex. Including sex and/or gender as research variables not only has the potential to improve the health of society overall now, but it also provides a foundation of knowledge on which to build future advances. The goal of this guidelines article is to provide advice on best practices to include sex and gender considerations in study design, as well as data collection, analysis, and interpretation to optimally establish rigor and reproducibility needed to inform clinical decision-making and improve outcomes. In cardiovascular physiology, incorporating sex and gender is a necessary component when optimally designing and executing research plans. The guidelines serve as the first guidance on how to include sex and gender in cardiovascular research. We provide here a beginning path toward achieving this goal and improve the ability of the research community to interpret results through a sex and gender lens to enable comparison across studies and laboratories, resulting in better health for all.


Asunto(s)
Investigación Biomédica , Cardiología , Caracteres Sexuales , Femenino , Humanos , Masculino , Sistema Cardiovascular
5.
Am J Physiol Heart Circ Physiol ; 326(1): H110-H115, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921661

RESUMEN

Changes in endothelial function precede the development of cardiovascular disease (CVD). We have previously shown that age-related declines in endothelial function in women are due in part to a reduction in endothelial cell endothelin-B receptor (ETBR) protein expression. However, it is not known if ETBR protein expression changes with aging in men. The purpose of this study was to test the hypothesis that ETBR protein expression is attenuated in older men (OM) compared with younger men (YM). Primary endothelial cells were harvested from the antecubital vein of 14 OM (60 ± 6 yr; 26 ± 3 kg/m2) and 17 YM (24 ± 5 yr; 24 ± 2 kg/m2). Cells were stained with 4',6-diamidino-2-phenylindole, vascular endothelial cadherin, and ETBR. Images were quantified using immunocytochemistry. Endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Systolic BP was similar (OM, 123 ± 11 vs. YM, 122 ± 10 mmHg) whereas diastolic BP was higher in OM (OM, 77 ± 7 vs. YM, 70 ± 6 mmHg; P < 0.01). Total testosterone was lower in OM (OM, 6.28 ± 4.21 vs. YM, 9.10 ± 2.68 ng/mL; P = 0.03). As expected, FMD was lower in OM (OM, 3.85 ± 1.51 vs. YM, 6.40 ± 2.68%; P < 0.01). However, ETBR protein expression was similar between OM and YM (OM, 0.39 ± 0.17 vs. YM, 0.42 ± 0.17 AU; P = 0.66). These data suggest that ETBR protein expression is not altered with age in men. These findings contrast with our previous data in women and further support sex differences in the endothelin system.NEW & NOTEWORTHY Our laboratory has previously shown that age-related declines in endothelial function are associated with a reduction in endothelial cell ETBR protein expression in women. However, it is unclear if endothelial cell ETBR protein expression is reduced with aging in men. This study demonstrates that endothelial cell ETBR protein expression is preserved with aging in men, and provides additional evidence for sex differences in the endothelin system.


Asunto(s)
Envejecimiento , Células Endoteliales , Humanos , Femenino , Masculino , Anciano , Envejecimiento/fisiología , Brazo , Endotelinas , Endotelio Vascular
6.
Am J Physiol Heart Circ Physiol ; 324(6): H732-H738, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36961490

RESUMEN

Endothelin-1 (ET-1) contributes to vascular dysfunction in postmenopausal women (PMW). Although aerobic exercise is beneficial in reducing ET-1-mediated vasoconstrictor tone in men, it is unknown whether this favorable vascular effect occurs in women. We tested the hypothesis that aerobic exercise training reduces ET-1-mediated vasoconstriction in PMW. We further hypothesized that reductions in ET-1 vasoconstrictor tone underly exercise-induced improvements in endothelium-dependent vasodilatation in PMW. Forearm blood flow (FBF) responses to intra-arterial infusion of selective ETA receptor blockade (BQ-123, 100 nmol/min for 60 min) and acetylcholine (4.0, 8.0, and 16.0 µg/100 mL tissue/min) in the absence and presence of ETA receptor blockade were determined before and after a 12-wk aerobic exercise training intervention in 18 healthy, sedentary PMW (58 ± 4 yr). Women exercised an average of 4.9 ± 0.7 day/wk for 51 ± 7 min/day at 71 ± 3% of maximal heart rate. Before exercise, BQ-123 significantly increased FBF (∼25%) in sedentary PMW; however, this effect was abolished following the exercise intervention. FBF responses to acetylcholine were also significantly higher after exercise training (from 4.2 ± 1.2 to 14.0 ± 3.8 mL/100 mL tissue/min) versus before (from 4.1 ± 1.0 to 11.4 ± 3.3 mL/100 mL tissue/min; ∼25% increase; P < 0.05). Before exercise training, coinfusion of BQ-123 with acetylcholine enhanced (∼25%; P < 0.05) the vasodilator response (from 4.4 ± 1.1 to 13.9 ± 4.2 mL/100 mL tissue/min) compared with acetylcholine alone; after exercise training, the presence of BQ-123 did not significantly affect the vasodilator response to acetylcholine. Aerobic exercise training reduces ET-1-mediated vasoconstriction in PMW. Furthermore, decreased ET-1-mediated vasoconstriction is an important mechanism underlying aerobic exercise-induced improvement in endothelium-dependent vasodilation in PMW.NEW & NOTEWORTHY Endothelin-1 (ET-1) contributes to declines in endothelial function in postmenopausal women. To our knowledge, we show for the first time that aerobic exercise reduces ET-1-mediated vasoconstriction in previously sedentary postmenopausal women. Moreover, aerobic exercise improved endothelial-dependent dilation due in part to the reductions in ET-1-mediated vasoconstriction.


Asunto(s)
Vasoconstricción , Vasodilatación , Masculino , Humanos , Femenino , Endotelina-1/farmacología , Acetilcolina/farmacología , Posmenopausia , Vasodilatadores/farmacología , Vasoconstrictores/farmacología , Endotelio Vascular , Ejercicio Físico/fisiología , Flujo Sanguíneo Regional
7.
Physiol Rep ; 10(5): e15209, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35246960

RESUMEN

The mechanisms for the benefits of Angiotensin Receptor Neprilysin Inhibition (ARNi) in heart failure patients with reduced ejection fraction (HFrEF) are likely beyond blood pressure reduction. Measures of vascular function such as arterial stiffness and endothelial function are strong prognostic markers of cardiovascular outcomes in HFrEF, yet the impact of ARNi on vascular health remains to be explored. We hypothesized that arterial stiffness and endothelial function would improve after 12 weeks of ARNi in HFrEF. We tested 10 stable HFrEF patients at baseline and following 12 weeks of ARNi [64 ± 9 years, Men/Women: 9/1, left ventricular ejection fraction (EF): 28 ± 6%] as well as 10 stable HFrEF patients that remained on conventional treatment (CON: 60 ± 7 years, Men/Women: 6/4, EF: 31 ± 5%; all p = NS). Arterial stiffness was assessed via carotid-femoral pulse wave velocity (PWV) and endothelial function was assessed via brachial artery flow-mediated dilation (FMD). PWV decreased after 12 weeks of ARNi (9.0 ± 2.1 vs. 7.1 ± 1.2 m/s; p < 0.01) but not in CON (7.0 ± 2.4 vs. 7.5 ± 2.3 m/s; p = 0.35), an effect that remained when controlling for reductions in mean arterial pressure (p < 0.01). FMD increased after 12 weeks of ARNi (2.2 ± 1.9 vs. 5.5 ± 2.1%; p < 0.001) but not in CON (4.8 ± 3.8 vs. 5.4 ± 3.4%; p = 0.34). Baseline PWV (p = 0.06) and FMD (p = 0.07) were not different between groups. These preliminary data suggest that 12 weeks of ARNi therapy may reduce arterial stiffness and improve endothelial function in HFrEF. Thus, the findings from this pilot study suggest that the benefits of ARNi are beyond blood pressure reduction and include improvements in vascular function.


Asunto(s)
Insuficiencia Cardíaca , Neprilisina , Aminobutiratos/farmacología , Angiotensinas/farmacología , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Masculino , Proyectos Piloto , Análisis de la Onda del Pulso , Receptores de Angiotensina , Volumen Sistólico/fisiología , Función Ventricular Izquierda
9.
Am J Physiol Heart Circ Physiol ; 322(1): H66-H70, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34797173

RESUMEN

In recent years, the traditional, unspoken assumption in published biomedical research studies that the young, healthy (usually white) male is the "default human" has received increasing scrutiny and criticism. The historical underrepresentation of female participants in biomedical research has been increasingly recognized and addressed, including with the current call for papers at the American Journal of Physiology-Heart and Circulatory Physiology. Our goal in the present Perspectives is to discuss the topic of terminology (man/woman vs. male/female) for human research participants when considering sex as a biological variable. This important consideration is consistent with the importance of gender identity and related topics to psychological, emotional, and physical health. Just as pronouns are important, so is appropriate terminology when referring to human research volunteers. Despite some disagreement regarding terminology between our two groups of authors, we provide consensus recommendations. Importantly, we all agree that the most vital aspect of the present discussion is the broader focus on sex as a biological variable and appropriate inclusion of biological sex in in vitro, preclinical, and human research studies.


Asunto(s)
Fisiología/normas , Guías de Práctica Clínica como Asunto , Caracteres Sexuales , Terminología como Asunto , Humanos , Publicaciones Periódicas como Asunto/normas
10.
Hypertension ; 79(1): 139-149, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34809435

RESUMEN

Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense extracellular NaCl and angiotensin II concentrations to regulate body fluid homeostasis and arterial blood pressure. Lesion of the anteroventral third ventricular region or OVLT attenuates multiple forms of neurogenic hypertension. However, the extent by which OVLT neurons directly regulate sympathetic nerve activity to produce hypertension is not known. Therefore, the present study tested this hypothesis by using a multi-faceted approach including optogenetics, single-unit and multifiber nerve recordings, and chemogenetics. First, optogenetic activation of OVLT neurons in conscious Sprague-Dawley rats (250-400 g) produced frequency-dependent increases in arterial blood pressure and heart rate. These responses were not altered by the vasopressin receptor antagonist (ß-mercapto-ß,ß-cyclopentamethylenepropionyl1,O-me-Tyr2,Arg8)-vasopressin but eliminated by the ganglionic blocker chlorisondamine. Second, optogenetic activation of OVLT neurons significantly elevated renal, splanchnic, and lumbar sympathetic nerve activity. Third, single-unit recordings revealed optogenetic activation of the OVLT significantly increased the discharge of bulbospinal, sympathetic neurons in the rostral ventrolateral medulla. Lastly, chronic chemogenetic activation of OVLT neurons for 7 days significantly increased 24-hour fluid intake and mean arterial blood pressure. When the 24-hour fluid intake was clamped at baseline intakes, chemogenetic activation of OVLT neurons still produced a similar increase in arterial blood pressure. Neurogenic pressor activity assessed by the ganglionic blocker chlorisondamine was greater at 7 days of OVLT activation versus baseline. Collectively, these findings indicate that acute or chronic activation of OVLT neurons produces a sympathetically mediated hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Hipertensión/fisiopatología , Neuronas/fisiología , Organum Vasculosum/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Animales , Frecuencia Cardíaca/fisiología , Hemodinámica/fisiología , Masculino , Optogenética , Ratas , Ratas Sprague-Dawley
11.
Med Sci Sports Exerc ; 54(3): 408-416, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34711708

RESUMEN

INTRODUCTION: Postmenopausal women (PMW) display exaggerated increases in blood pressure (BP) during exercise, yet the mechanism(s) involved remain unclear. Moreover, research on the impact of menopausal changes in estradiol on cardiovascular control during exercise are limited. Herein, we tested the hypothesis that sympathetic responses during exercise are augmented in PMWcompared with young women (YW), and estradiol administration attenuates these responses. METHODS: Muscle sympathetic nerve activity (MSNA) and mean arterial pressure (MAP) were measured in 13 PMW (58 ± 1 yr) and 17 YW (22 ± 1 yr) during 2 min of isometric handgrip. Separately, MSNA and BP responses were measured during isometric handgrip in six PMW (53 ± 1 yr) before and after 1 month of transdermal estradiol (100 µg·d-1). A period of postexercise ischemia (PEI) to isolate muscle metaboreflex activation followed all handgrip bouts. RESULTS: Resting MAP was similar between PMW and YW, whereas MSNA was greater in PMW (23 ± 3 vs 8 ± 1 bursts per minute; P < 0.05). During handgrip, the increases in MSNA (PMW Δ16 ± 2 vs YW Δ6 ± 1 bursts per minute; P < 0.05) and MAP (PMW Δ18 ± 2 vs YW Δ12 ± 2 mm Hg; P < 0.05) were greater in PMW and remained augmented during PEI. Estradiol administration decreased resting MAP but not MSNA in PMW. Moreover, MSNA (PMW (-E2) Δ27 ± 8 bursts per minute versus PMW (+E2) Δ12 ± 5 bursts per minute; P < 0.05) and MAP (Δ31 ± 8 mm Hg vs Δ20 ± 6 mm Hg; P < 0.05) responses during handgrip were attenuated in PMW after estradiol administration. Likewise, MAP responses during PEI were lower after estradiol. CONCLUSIONS: These data suggest that PMW exhibit an exaggerated MSNA and BP response to isometric exercise, due in part to heightened metaboreflex activation. Furthermore, estradiol administration attenuated BP and MSNA responses to exercise in PMW.


Asunto(s)
Barorreflejo/fisiología , Presión Sanguínea/fisiología , Estradiol/administración & dosificación , Ejercicio Físico/fisiología , Posmenopausia/fisiología , Sistema Nervioso Simpático/fisiología , Factores de Edad , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Estrógenos/administración & dosificación , Femenino , Humanos , Persona de Mediana Edad , Posmenopausia/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Adulto Joven
12.
J Appl Physiol (1985) ; 131(6): 1783-1791, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34709068

RESUMEN

Black women (BLW) have a higher prevalence of cardiovascular disease (CVD) morbidity and mortality compared with White women (WHW). A racial disparity in CVD risk has been identified early in life as young adult BLW demonstrate attenuated vascular function compared with WHW. Previous studies comparing vascular function between premenopausal WHW and BLW have been limited to the early follicular (EF) phase of the menstrual cycle, which may not reflect their vascular function during other menstrual phases. Therefore, we evaluated peripheral microvascular function in premenopausal WHW and BLW using passive leg movement (PLM) during three menstrual phases: EF, ovulation (OV), and mid-luteal (ML). We hypothesized that microvascular function would be augmented during the OV and ML phases compared with the EF phase in both groups, but would be attenuated in BLW compared with WHW at all three phases. PLM was performed on 26 apparently healthy premenopausal women not using hormonal contraceptives: 15 WHW (23 ± 3 yr), 11 BLW (24 ± 5 yr). There was a main effect of race on the overall change in leg blood flow (ΔLBF) (P = 0.01) and leg blood flow area under the curve (LBF AUC) (P = 0.02), such that LBF was lower in BLW. However, there was no effect of phase on ΔLBF (P = 0.69) or LBF AUC (P = 0.65), nor an interaction between race and phase on ΔLBF (P = 0.37) or LBF AUC (P = 0.75). Despite peripheral microvascular function being unchanged across the menstrual cycle, a racial disparity was apparent as microvascular function was attenuated in BLW compared with WHW across the menstrual cycle.NEW & NOTEWORTHY This is the first study to compare peripheral microvascular function between young, otherwise healthy Black women and White women at multiple phases of the menstrual cycle. Our novel findings demonstrate a significant effect of race on peripheral microvascular function such that Black women exhibit significant attenuations in microvascular function across the menstrual cycle compared with White women.


Asunto(s)
Fase Folicular , Ciclo Menstrual , Femenino , Hemodinámica , Humanos , Pierna , Premenopausia , Adulto Joven
13.
Auton Neurosci ; 236: 102873, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34509133

RESUMEN

There are clear differences between men and women, and differences among races, in the incidence and prevalence of hypertension. Furthermore, there is extensive inter-individual variability among humans in the extent to which sodium ingestion alters blood pressure. Orthostatic intolerance and orthostatic hypotension are more common in women; these are often treated with a high salt diet, which has variable efficacy in increasing blood volume and blood pressure. Conversely, people with certain forms of hypertension are often counseled to decrease their sodium intake. Non-Hispanic Black men and women have higher rates of hypertension compared to non-Hispanic White men and women and other racial/ethnic groups. In aggregate, Black women appear to have better orthostatic tolerance than White women. In the present paper, we summarize and evaluate the current evidence for mechanisms of blood pressure regulation in men and women, as well as differences between Black and White groups, with a focus on cardiovascular responses to salt and differences among these groups. We also provide a brief review of factors that are not traditionally considered to be "biological" - such as socio-economic disparities resulting from historic and contemporary inequity across racial groups. These non-biological factors have direct and substantial influences on cardiovascular mechanisms, as well as implications for the influences of salt and sodium intake on blood pressure and cardiovascular health. We conclude that both biological and socio-economic factors provide critical modulating influences when considering the impacts of sodium on cardiovascular health as functions of race and sex.


Asunto(s)
Hipertensión , Sodio en la Dieta , Población Negra , Presión Sanguínea , Femenino , Humanos , Hipertensión/epidemiología , Masculino , Factores Sexuales , Cloruro de Sodio Dietético
14.
Am J Physiol Heart Circ Physiol ; 321(3): H592-H598, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415188

RESUMEN

The endothelin-B (ETB) receptor is a key regulator of vascular endothelial function in women. We have previously shown that the ETB receptor mediates vasodilation in young women, an effect that is lost after menopause. However, the direct impact of changes in estradiol (E2) on ETB receptor function in women remains unclear. Therefore, the purpose of this study was to test the hypothesis that E2 exposure modulates ETB receptor-mediated dilation in young women. Fifteen young women (24 ± 4 yr, 24 ± 3 kg/m2) completed the study. Endogenous sex hormone production was suppressed with daily administration of a gonadotropin-releasing hormone antagonist (GnRHant; Ganirelix) for 10 days; E2 (0.1 mg/day, Vivelle-Dot patch) was added back on days 4-10. We measured vasodilation in the cutaneous microcirculation (microvascular endothelial function) via local heating (42°C) on day 4 (GnRHant) and day 10 (GnRHant + E2) using laser Doppler flowmetry coupled with intradermal microdialysis during perfusions of lactated Ringer's (control) and ETB receptor antagonist (BQ-788, 300 nM). During GnRHant, vasodilatory responses to local heating were enhanced with ETB receptor blockade (control: 83 ± 9 vs. BQ-788: 90 ± 5%CVCmax, P = 0.004). E2 administration improved vasodilation in the control site (GnRHant: 83 ± 9 vs. GnRHant + E2: 89 ± 8%CVCmax, P = 0.036). Furthermore, cutaneous vasodilatory responses during ETB receptor blockade were blunted after E2 administration (control: 89 ± 8 vs. BQ-788: 84 ± 8%CVCmax, P = 0.047). These data demonstrate that ovarian hormones, specifically E2, modulate ETB receptor function and contribute to the regulation of microvascular endothelial function in young women.NEW & NOTEWORTHY The endothelin-B (ETB) receptor mediates vasodilation in young women, an effect lost following menopause. It is unclear whether these alterations are due to aging or changes in estradiol (E2). During endogenous hormone suppression (GnRH antagonist), blockade of ETB receptors enhanced cutaneous microvascular vasodilation. However, during E2 administration, blockade of ETB receptors attenuated vasodilation, indicating that the ETB receptor mediates dilation in the presence of E2. In young women, ETB receptors mediate vasodilation in the presence of E2, an effect that is lost when E2 is suppressed.


Asunto(s)
Antagonistas de los Receptores de la Endotelina B/farmacología , Estradiol/farmacología , Estrógenos/farmacología , Receptor de Endotelina B/metabolismo , Vasodilatación , Adulto , Femenino , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/farmacología , Antagonistas de Hormonas/farmacología , Humanos , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Microvasos/fisiología , Oligopéptidos/farmacología , Piperidinas/farmacología , Piel/irrigación sanguínea
15.
Front Aging ; 2: 727416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822003

RESUMEN

Aging is a primary risk factor for cardiovascular disease (CVD), which is the leading cause of death in developed countries. Globally, the population of adults over the age of 60 is expected to double by the year 2050. CVD prevalence and mortality rates differ between men and women as they age in part due to sex-specific mechanisms impacting the biological processes of aging. Measures of vascular function offer key insights into cardiovascular health. Changes in vascular function precede changes in CVD prevalence rates in men and women and with aging. A key mechanism underlying these changes in vascular function is the endothelin (ET) system. Studies have demonstrated sex and sex hormone effects on endothelin-1 (ET-1), and its receptors ETA and ETB. However, with aging there is a dysregulation of this system resulting in an imbalance between vasodilation and vasoconstriction. Thus, ET-1 may play a role in the sex differences observed with vascular aging. While most research has been conducted in pre-clinical animal models, we describe more recent translational data in humans showing that the ET system is an important regulator of vascular dysfunction with aging and acts through sex-specific ET receptor mechanisms. In this review, we present translational evidence (cell, tissue, animal, and human) that the ET system is a key mechanism regulating sex-specific changes in vascular function with aging, along with therapeutic interventions to reduce ET-mediated vascular dysfunction associated with aging. More knowledge on the factors responsible for the sex differences with vascular aging allow for optimized therapeutic strategies to attenuate CVD risk in the expanding aging population.

17.
Physiol Rep ; 8(18): e14581, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32965797

RESUMEN

Older adults have reduced fluid intake and impaired body fluid and electrolyte regulation. Older female adults exhibit exaggerated exercise blood pressure (BP) responses, which is associated with an increased risk of adverse cardiovascular events. However, it is unclear if dysregulated body fluid homeostasis contributes to altered exercise BP responses in older female adults. We tested the hypothesis that short-term water deprivation (WD) increases exercise BP responses in older female adults. Fifteen female adults (eight young [25 ± 6 years] and seven older [65 ± 6 years]) completed two experimental conditions in random crossover fashion; a euhydration control condition and a stepwise reduction in water intake over three days concluding with a 16-hr WD period. During both trials, beat-to-beat BP (photoplethysmography) and heart rate (electrocardiogram) were continuously assessed during rest, handgrip exercise (30% MVC), and post-exercise ischemia (metaboreflex isolation). At screening, older compared to young female adults had greater systolic and diastolic BP (p ≤ .02). Accelerometer-assessed habitual physical activity was not different between groups (p = .65). Following WD, 24-hr urine flow rate decreased, whereas thirst, urine specific gravity, and plasma osmolality increased (condition: p < .05 for all), but these WD-induced changes were not different between age groups (interaction: p ≥ .31 for all). Resting systolic and diastolic BP values were higher in older compared to young adults (p < .01 for both), but were not different between experimental conditions (p ≥ .20). In contrast to our hypothesis, WD was associated with attenuated systolic BP responses during handgrip exercise (post hoc: p < .01) and post-exercise ischemia (post hoc: p = .03) in older, but not young, female adults. These data suggest that reduced water intake-induced challenges to body fluid homeostasis do not contribute to exaggerated exercise BP responses in post-menopausal female adults.


Asunto(s)
Envejecimiento/fisiología , Presión Sanguínea , Ejercicio Físico , Reflejo , Privación de Agua/fisiología , Adulto , Anciano , Ingestión de Líquidos , Femenino , Humanos , Persona de Mediana Edad , Equilibrio Hidroelectrolítico
19.
J Appl Physiol (1985) ; 129(5): 1120, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32702278

Asunto(s)
Ciclo Menstrual , Humanos
20.
Am J Physiol Heart Circ Physiol ; 319(1): H242-H247, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32559137

RESUMEN

The endothelin system plays an important role in mediating vascular function. The endothelin-B receptor (ETBR) on endothelial cells mediates vasodilation via nitric oxide production. The vasodilatory effect of the ETBR is lost following menopause and may contribute to impaired vascular endothelial function in postmenopausal women (PMW). However, it is unclear if these functional changes are due to changes in ETBR expression on the endothelium. Therefore, the purpose of this study was to test the hypothesis that endothelial cell ETBR expression is lower in PMW compared with young women (YW). Primary endothelial cells were harvested from the antecubital vein of healthy PMW (n = 15, 60 ± 6 yr) and YW (n = 15, 22 ± 2 yr). Cells were identified as endothelial cells by staining for vascular endothelial cadherin, and nuclear integrity was assessed using 4',6-diamidino-2-phenylindole (DAPI). Within those cells, ETBR was quantified using immunocytochemistry; fluorescence intensity was measured in 30 cells and averaged for each participant. Endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Endothelial cell ETBR expression was lower in PMW [0.46 ± 0.11 arbitrary units (AU)] compared with YW (0.58 ± 0.14 AU; P = 0.02). Furthermore, significant correlations between ETBR expression and FMD (r = 0.47, P < 0.01), total cholesterol (r = -0.38, P = 0.04), and LDL cholesterol (r = -0.39, P = 0.03) were observed. These data demonstrate that endothelial cell ETBR expression is attenuated in PMW. These novel findings provide additional insight into the mechanisms underlying vascular endothelial dysfunction in PMW.NEW & NOTEWORTHY Our study provides novel data demonstrating attenuated endothelial ETBR expression in postmenopausal women. Furthermore, our data extend current knowledge by demonstrating a positive relation between ETBR expression and brachial artery flow-mediated dilation. These findings provide additional mechanistic insight into vascular endothelial dysfunction in postmenopausal women.


Asunto(s)
Endotelio Vascular/metabolismo , Posmenopausia/metabolismo , Receptor de Endotelina B/genética , Anciano , Femenino , Humanos , Persona de Mediana Edad , Receptor de Endotelina B/metabolismo , Venas/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA