Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care Res Pract ; 2021: 6621555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659830

RESUMEN

BACKGROUND: Sedation of intensive care patients is needed for patient safety, but deep sedation is associated with adverse outcomes. Frontal electromyogram-based Responsiveness Index (RI) aims to quantify the level of sedation and is scaled 0-100 (low index indicates deep sedation). We compared RI-based sedation to Richmond Agitation-Sedation Scale- (RASS-) based sedation. Our hypothesis was that RI-controlled sedation would be associated with increased total time alive without mechanical ventilation at 30 days without an increased number of adverse events. METHODS: 32 critically ill adult patients with mechanical ventilation and administration of sedation were randomized to either RI- or RASS-guided sedation. Patients received propofol and oxycodone, if possible. The following standardized sedation protocol was utilized in both groups to achieve the predetermined target sedation level: either RI 40-80 (RI group) or RASS -3 to 0 (RASS group). RI measurement was blinded in the RASS group, and the RI group was blinded to RASS assessments. State Entropy (SE) values were registered in both groups. RESULTS: RI and RASS groups did not differ in total time alive in 30 days without mechanical ventilation (p=0.72). The incidence of at least one sedation-related adverse event did not differ between the groups. Hypertension was more common in the RI group (p=0.01). RI group patients were in the target RI level 22% of the time and RASS group patients had 57% of scores within the target RASS level. The RI group spent significantly more time in their target sedation level than the RASS group spent in the corresponding RI level (p=0.03). No difference was observed between the groups (p=0.13) in the corresponding analysis for RASS. Propofol and oxycodone were administered at higher RI and SE values and lower RASS values in the RI group than in the RASS group. CONCLUSION: Further studies with a larger sample size are warranted to scrutinize the optimal RI level during different phases of critical illness.

2.
Crit Care Med ; 37(8): 2427-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19487928

RESUMEN

OBJECTIVE: To evaluate electroencephalogram-derived quantitative variables after out-of-hospital cardiac arrest. DESIGN: Prospective study. SETTING: University hospital intensive care unit. PATIENTS: Thirty comatose adult patients resuscitated from a witnessed out-of-hospital ventricular fibrillation cardiac arrest and treated with induced hypothermia (33 degrees C) for 24 hrs. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Electroencephalography was registered from the arrival at the intensive care unit until the patient was extubated or transferred to the ward, or 5 days had elapsed from cardiac arrest. Burst-suppression ratio, response entropy, state entropy, and wavelet subband entropy were derived. Serum neuron-specific enolase and protein 100B were measured. The Pulsatility Index of Transcranial Doppler Ultrasonography was used to estimate cerebral blood flow velocity. The Glasgow-Pittsburgh Cerebral Performance Categories was used to assess the neurologic outcome during 6 mos after cardiac arrest. Twenty patients had Cerebral Performance Categories of 1 to 2, one patient had a Cerebral Performance Categories of 3, and nine patients had died (Cerebral Performance Categories of 5). Burst-suppression ratio, response entropy, and state entropy already differed between good (Cerebral Performance Categories 1-2) and poor (Cerebral Performance Categories 3-5) outcome groups (p = .011, p = .011, p = .008) during the first 24 hrs after cardiac arrest. Wavelet subband entropy was higher in the good outcome group between 24 and 48 hrs after cardiac arrest (p = .050). All patients with status epilepticus died, and their wavelet subband entropy values were lower (p = .022). Protein 100B was lower in the good outcome group on arrival at ICU (p = .010). After hypothermia treatment, neuron-specific enolase and protein 100B values were lower (p = .002 for both) in the good outcome group. The Pulsatility Index was also lower in the good outcome group (p = .004). CONCLUSIONS: Quantitative electroencephalographic variables may be used to differentiate patients with good neurologic outcomes from those with poor outcomes after out-of-hospital cardiac arrest. The predictive values need to be determined in a larger, separate group of patients.


Asunto(s)
Electroencefalografía , Indicadores de Salud , Paro Cardíaco/terapia , Hipotermia Inducida , Hipoxia-Isquemia Encefálica/diagnóstico , Adulto , Anciano , Circulación Cerebrovascular , Femenino , Finlandia , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Sensibilidad y Especificidad , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...