Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 17951, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289432

RESUMEN

The Atacama Desert is the driest and oldest desert on Earth. Despite the abundance evidence for long-term landscape stability, there are subtle signs of localised fluvial erosion and deposition since the onset of hyperaridity in the rock record. In the dry core of the Atacama Desert, pluvial episodes allowed antecedent drainage to incise into uplifting fault scarps, which in turn generated sinuous to meandering channels. Incision of ancient alluvial fan surfaces occurred during intermittent fluvial periods, albeit without signs of surface erosion. Fluvial incision during predominantly hyperarid climate periods is evident from these channels in unconsolidated alluvium. The absence of dense vegetation to provide bank stability and strength led us to investigate the potential role of regionally ubiquitous CaSO4-rich surface cover. This has enabled the preservation of Miocene surfaces and we hypothesize that it provided the required bank stability by adding strength to the upper decimetre to meter of incised alluvium to allow high sinuosity of stream channels to form during pluvial episodes in the Quaternary.


Asunto(s)
Clima Desértico , Suelo , Microbiología del Suelo , Ríos
2.
PLoS One ; 15(2): e0229453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32084252

RESUMEN

The Atacama Desert (21-26°S) is currently one of the driest places on Earth and metal(loid)s are of special concern for this region, which hosts the largest-known porphyry copper deposits produced in Chile. Evidence of past environmental conditions is commonly preserved in natural archives, such as lacustrine sediments. Sediment records obtained from Inca Coya Lake (22°20'S-68°35'W, 2534 m.a.s.l.), a small lake located in the Atacama Desert, reflected the evolution of regional mining activity during the 20th century and sedimentation associated with decadal climate variability. We studied the aquatic community structure changes recorded in sediment records from Inca Coya Lake. By analysis of magnetic properties (susceptibility, hysteresis curves and Curie temperatures), grain size and geochemical composition of the sediments, we identified environmental periods and changes in the community of benthic and planktonic organisms (diatoms and diapausing egg bank). We identified three detrital episodes that we interpret as dry/wet phases during the last 90 years associated with the increase of flash flood events promoting hypoxia oscillations; anthropogenic (mining activity) signals were also identified. Invertebrate community structure (primary consumers) reflected the metal exposure, measured as changes in assemblage composition through species turnover. Diatom community composition was best associated with variables related to wetter/drier alternation and consequent changes in oxygen availability. Bioindicators analyzed (diatoms, diapausing egg bank and invertebrate community) demonstrated to be excellent indicators of the bioavailability of compounds in the aquatic ecosystem of Inca Coya Lake, allowing the environmental impact assessment of the water resources due to flash floods and mining activity in the driest desert of the world.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Lagos/análisis , Metales/análisis , Animales , Organismos Acuáticos/metabolismo , Chile , Clima Desértico , Magnetismo
3.
Sci Rep ; 9(1): 5334, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926945

RESUMEN

The occurrence of heavy rainfall events is expected to undergo significant changes under increasing anthropogenic forcing. South-eastern Europe is reacting rapidly to such changes, therefore understanding and forecasting of precipitation variability is vital to better comprehending environmental changes in this area. Here we present a sub-decadal reconstruction of enhanced rainfall events for the past 2000 years from the Southern Carpathians, Romania using peat geochemistry. Five clear periods of enhanced rainfall are identified at 125-250, 600-900, 1050-1300, 1400-1575 and 1725-1980 CE. Significant runoff is observed during the second half of the Medieval Warm Period, whilst the Little Ice Age was characterised by significant variability. The North Atlantic Oscillation appears to be the main control on regional precipitation, but changes in solar irradiance also seem to play a significant role, together with the Siberian High. Comparison of the data presented here with model outputs confirms the ability of models to predict general trends, and major shifts, but highlights the complexity of the region's hydrological history.

4.
Sci Rep ; 9(1): 5270, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30918294

RESUMEN

Paleoclimate records from the Atacama Desert are rare and mostly discontinuous, mainly recording runoff from the Precordillera to the east, rather than local precipitation. Until now, paleoclimate records have not been reported from the hyperarid core of the Atacama Desert (<2 mm/yr). Here we report the results from multi-disciplinary investigation of a 6.2 m drill core retrieved from an endorheic basin within the Coastal Cordillera. The record spans the last 215 ka and indicates that the long-term hyperarid climate in the Central Atacama witnessed small but significant changes in precipitation since the penultimate interglacial. Somewhat 'wetter' climate with enhanced erosion and transport of material into the investigated basin, commenced during interglacial times (MIS 7, MIS 5), whereas during glacial times (MIS 6, MIS 4-1) sediment transport into the catchment was reduced or even absent. Pelagic diatom assemblages even suggest the existence of ephemeral lakes in the basin. The reconstructed wetter phases are asynchronous with wet phases in the Altiplano but synchronous with increased sea-surface temperatures off the coasts of Chile and Peru, i.e. resembling modern El Niño-like conditions.

5.
Sci Rep ; 8(1): 13952, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224725

RESUMEN

Dating of extensive alluvial fan surfaces and fluvial features in the hyperarid core of the Atacama Desert, Chile, using cosmogenic nuclides provides unrivalled insights about the onset and variability of aridity. The predominantly hyperarid conditions help to preserve the traces of episodic climatic and/or slow tectonic change. Utilizing single clast exposure dating with cosmogenic 10Be and 21Ne, we determine the termination of episodes of enhanced fluvial erosion and deposition occurring at ~19, ~14, ~9.5 Ma; large scale fluvial modification of the landscape had ceased by ~2-3 Ma. The presence of clasts that record pre-Miocene exposure ages (~28 Ma and ~34 Ma) require stagnant landscape development during the Oligocene. Our data implies an early onset of (hyper-) aridity in the core region of the Atacama Desert, interrupted by wetter but probably still arid periods. The apparent conflict with interpretation that favour a later onset of (hyper-) aridity can be reconciled when the climatic gradients within the Atacama Desert are considered.

6.
Science ; 340(6139): 1421-7, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23661643

RESUMEN

Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, in northeast (NE) Arctic Russia, shows that 3.6 to 3.4 million years ago, summer temperatures were ~8°C warmer than today, when the partial pressure of CO2 was ~400 parts per million. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until ~2.2 million years ago, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.

7.
Science ; 337(6092): 315-20, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22722254

RESUMEN

The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El'gygytgyn in northeastern (NE) Russia provides a continuous, high-resolution record from the Arctic, spanning the past 2.8 million years. This core reveals numerous "super interglacials" during the Quaternary; for marine benthic isotope stages (MIS) 11c and 31, maximum summer temperatures and annual precipitation values are ~4° to 5°C and ~300 millimeters higher than those of MIS 1 and 5e. Climate simulations show that these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.


Asunto(s)
Cambio Climático , Clima Frío , Lagos , Regiones Árticas , Sedimentos Geológicos , Cubierta de Hielo , Datación Radiométrica , Federación de Rusia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...