Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 107(5-1): 054604, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37329078

RESUMEN

Elongated colloidal rods at sufficient packing conditions are known to form stable lamellar or smectic phases. Using a simplified volume-exclusion model, we propose a generic equation of state for hard-rod smectics that is robust against simulation results and is independent of the rod aspect ratio. We then extend our theory by exploring the elastic properties of a hard-rod smectic, including the layer compressibility (B) and bending modulus (K_{1}). By introducing weak backbone flexibility we are able to compare our predictions with experimental results on smectics of filamentous virus rods (fd) and find quantitative agreement between the smectic layer spacing, the out-of-plane fluctuation strength, as well as the smectic penetration length λ=sqrt[K_{1}/B]. We demonstrate that the layer bending modulus is dominated by director splay and depends sensitively on lamellar out-of-plane fluctuations that we account for on the single-rod level. We find that the ratio between the smectic penetration length and the lamellar spacing is about two orders of magnitude smaller than typical values reported for thermotropic smectics. We attribute this to the fact that colloidal smectics are considerably softer in terms of layer compression than their thermotropic counterparts while the cost of layer bending is of comparable magnitude.


Asunto(s)
Cristales Líquidos , Virus , Simulación por Computador
2.
J Phys Chem Lett ; 14(1): 199-206, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36580685

RESUMEN

A general theoretical framework is proposed to quantify the thermodynamic properties of multicomponent hard colloidal mixtures. This framework is used to predict the phase behavior of mixtures of rods with spheres and rods with plates taking into account (liquid) crystal phases of both components. We demonstrate a rich and complex range of phase behaviors featuring a large variety of different multiphase coexistence regions, including two five-phase coexistence regions for hard rod/sphere mixtures, and even a six-phase equilibrium for hard rod/plate dispersions. The various multiphase coexistences featured in a particular mixture are in line with a recently proposed generalized phase rule and can be tuned through subtle variations of the particle shape and size ratio. Our approach qualitatively accounts for certain multiphase equilibria observed in rod/plate mixtures of clay colloids and will be a useful guide in tuning the phase behavior of shape-disperse mixtures in general.

3.
Phys Rev E ; 104(5-1): 054505, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942807

RESUMEN

Living polymers composed of noncovalently bonded building blocks with weak backbone flexibility may self-assemble into thermoresponsive lyotropic liquid crystals. We demonstrate that the reversible polymer assembly and phase behavior can be controlled by the addition of (nonadsorbing) rigid colloidal disks which act as an entropic reorienting "template" onto the supramolecular polymers. Using a particle-based second-virial theory that correlates the various entropies associated with the polymers and disks, we demonstrate that small fractions of discotic additives promote the formation of a polymer nematic phase. At larger disk concentrations, however, the phase is disrupted by collective disk alignment in favor of a discotic nematic fluid in which the polymers are dispersed antinematically. We show that the antinematic arrangement of the polymers generates a nonexponential molecular-weight distribution and stimulates the formation of oligomeric species. At sufficient concentrations the disks facilitate a liquid-liquid phase separation which can be brought into simultaneously coexistence with the two fractionated nematic phases, providing evidence for a four-fluid coexistence in reversible shape-dissimilar hard-core mixtures without cohesive interparticle forces. We stipulate the conditions under which such a phenomenon could be found in experiment.

4.
Phys Rev E ; 104(1-1): 014703, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34412251

RESUMEN

Colloidal rods immersed in a thermotropic liquid-crystalline solvent are at the basis of so-called hybrid liquid crystals, which are characterized by tunable nematic fluidity with symmetries ranging from conventional uniaxial nematic or antinematic to orthorhombic [Mundoor et al., Science 360, 768 (2018)SCIEAS0036-807510.1126/science.aap9359]. We provide a theoretical analysis of the elastic moduli of such systems by considering interactions between the individual rods with the embedding solvent through surface-anchoring forces, as well as steric and electrostatic interactions between the rods themselves. For uniaxial systems, the presence of colloidal rods generates a marked increase of the splay elasticity, which we found to be in quantitative agreement with experimental measurements. For orthorhombic hybrid liquid crystals, we provide estimates of all 12 elastic moduli and show that only a small subset of those elastic constants play a relevant role in describing the nematoelastic properties. The complexity and possibilities related to identifying the elastic moduli in experiments are briefly discussed.

5.
Phys Rev Lett ; 125(12): 127803, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016722

RESUMEN

Using a minimal algebraic model for the thermodynamics of binary rod-polymer mixtures, we provide evidence for a quintuple phase equilibrium; an observation that seems to be at odds with the Gibbs phase rule for two-component systems. Our model is based on equations of state for the relevant liquid crystal phases that are in quantitative agreement with computer simulations. We argue that the appearance of a quintuple equilibrium, involving an isotropic fluid, a nematic and smectic liquid crystal, and two solid phases, can be reconciled with a generalized Gibbs phase rule in which the two intrinsic length scales of the athermal colloid-polymer mixture act as additional field variables.

6.
Phys Rev E ; 101(6-1): 062707, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688562

RESUMEN

Based on simplifications of previous numerical calculations [H. Graf and H. Löwen, Phys. Rev. E 59, 1932 (1999)1063-651X10.1103/PhysRevE.59.1932], we propose algebraic free energy expressions for the smectic-A liquid crystal phase and the crystal phases of hard spherocylinders. Quantitative agreement with simulations is found for the resulting equations of state. The free energy expressions can be used to straightforwardly compute the full phase behavior for all aspect ratios and to provide a suitable benchmark for exploring how attractive interrod interactions mediate the phase stability through perturbation approaches such as free-volume or van der Waals theory.

7.
Soft Matter ; 14(44): 8935-8944, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30379187

RESUMEN

Mixing colloid shapes with distinctly different anisotropy generates composite nematics in which the order of the individual components can be fundamentally different. In colloidal rod-disk mixtures or hybrid nematics composed of anisotropic colloids immersed in a thermotropic liquid crystal, one of the components may adopt so-called anti-nematic order while the other exhibits conventional nematic alignment. Focussing on simple models for hard rods and disks, we employ Onsager-Straley's second-virial theory to derive scaling expressions for the elastic moduli of rods and disks in both nematic and anti-nematic configurations and identify their explicit dependence on particle concentration and shape. We demonstrate that the splay, bend and twist elasticity of anti-nematically ordered particles scale logarithmically with the degree of anti-nematic order, with the bend-splay ratio for anti-nematic discotic nematics being far greater than for conventional nematic systems. The impact of surface anchoring on the elastic properties of hybrid nematics will also be discussed in detail. We further demonstrate that the elasticity of mixed uniaxial rod-disk nematics depends exquisitely on the shape of the components and we provide simple scaling expressions that could help engineer the elastic properties of composite nematic liquid crystals.

8.
J Phys Condens Matter ; 30(7): 075101, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29313832

RESUMEN

Chiral rodlike colloids exposed to strong depletion attraction may self-assemble into chiral membranes whose twisted director field differs from that of a 3D bulk chiral nematic. We formulate a simple microscopic variational theory to determine the elastic moduli of rods assembled into a bidimensional smectic membrane. The approach is based on a simple Onsager-Straley theory for a non-uniform director field that we apply to describe rod twist within the membrane. A microscopic approach enables a detailed estimate of the individual Frank elastic moduli (splay, twist and bend) as well as the twist penetration depth of the smectic membrane in relation to the rod density and shape. We find that the elastic moduli are distinctly different from those of a bulk nematic fluid, with the splay elasticity being much stronger and the curvature elasticity much weaker than for rods assembled in a three-dimensional nematic fluid. We argue that the use of the simplistic one-constant approximation in which all moduli are assumed to be of equal magnitude is not appropriate for modelling the structure-property relation of smectic membranes.

9.
Sci Rep ; 7(1): 17058, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29213049

RESUMEN

Entropy-driven equilibrium phase behaviour of hard particle dispersions can be understood from excluded volume arguments only. While monodisperse hard spheres only exhibit a fluid-solid phase transition, anisotropic hard particles such as rods, discs, cuboids or boards exhibit various multi-phase equilibria. Ordering of such anisotropic particles increases the free volume entropy by reducing the excluded volume between them. The addition of depletants gives rise to an entropic patchiness represented by orientation-dependent attractions resulting in non-trivial phase behaviour. We show that free volume theory is a simple, generic and tractable framework that enables to incorporate these effects and rationalise various experimental findings. Plate-shaped particles constitute the main building blocks of clays, asphaltenes and chromonic liquid crystals that find widespread use in the food, cosmetics and oil industry. We demonstrate that mixtures of platelets and ideal depletants exhibit a strikingly rich phase behaviour containing several types of three-phase coexistence areas and even a quadruple region with four coexisting phases.

10.
Phys Rev E ; 94(6-1): 062704, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085407

RESUMEN

Inspired by recent simulations on highly open liquid crystalline structures formed by rigid planar nanorings, we present a simple theoretical framework explaining the prevalence of smectic over nematic ordering in systems of ring-shaped objects. The key part of our study is a calculation of the excluded volume of such nonconvex particles in the limit of vanishing thickness to diameter ratio. Using a simple stability analysis we then show that dilute systems of ring-shaped particles have a strong propensity to order into smectic structures with an unusual antinematic order while solid disks of the same dimensions exhibit nematic order. Since our model rings have zero internal volume, these smectic structures are essentially empty, resembling the strongly porous structures found in simulation. We argue that the antinematic intralamellar order of the rings plays an essential role in stabilizing these smectic structures.

11.
J Chem Phys ; 145(24): 244904, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28049298

RESUMEN

Many lyotropic liquid crystals are composed of mesogens that display a considerable spread in size or shape affecting their material properties and thermodynamics via various demixing and multi-phase coexistence scenarios. Starting from a generalized Onsager theory, we formulate a generic framework that enables locating spinodal polydispersities as well as identifying the nature of incipient size fractionation for arbitrary model potentials and size distributions. We apply our theory to nematic phases of both hard rods and disks whose main particle dimension is described by a unimodal log-normal distribution. We find that both rod-based and discotic nematics become unstable at a critical polydispersity of about 20%. We also investigate the effect of doping nematic assemblies with a small fraction of large species and highlight their effect on the stability of the uniform nematic fluid. Our main finding is that while rod-based are only weakly affected by the presence of large species, doping discotic nematics with very large platelets leads to a remarkable suppression of the spinodal instabilities. This could open up routes towards controlling the mechanical properties of nematic materials by manipulating the local stability of nematic fluid and its tendency to undergo fractionation-driven microphase separation.

12.
J Chem Phys ; 143(14): 144907, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26472398

RESUMEN

We theoretically investigate the pitch of lyotropic cholesteric phases composed of slender rods with steric chirality transmitted via a weak helical deformation of the backbone. In this limit, the model is amenable to analytical treatment within Onsager theory and a closed expression for the pitch versus concentration and helical shape can be derived. Within the same framework, we also briefly review the possibility of alternative types of chiral order, such as twist-bend or screw-like nematic phases, finding that cholesteric order dominates for weakly helical distortions. While long-ranged or "soft" chiral forces usually lead to a pitch decreasing linearly with concentration, steric chirality leads to a much steeper decrease of quadratic nature. This reveals a subtle link between the range of chiral intermolecular interaction and the pitch sensitivity with concentration. A much richer dependence on the thermodynamic state is revealed for polar helices where parallel and anti-parallel pair alignments along the local director are no longer equivalent. It is found that weak temperature variations may lead to dramatic changes in the pitch, despite the lyotropic nature of the assembly.


Asunto(s)
Nanopartículas/química , Termodinámica , Modelos Moleculares
13.
Artículo en Inglés | MEDLINE | ID: mdl-26066186

RESUMEN

We investigate the emergence of chiral meso-structures in one-dimensional fluids consisting of stacked discotic particles and demonstrate that helical undulations are generated spontaneously from internal elastic stresses. The stability of these helical conformations arises from an interplay between long-ranged soft repulsions and nanopore confinement which is naturally present in columnar liquid crystals. Using a simple mean-field theory based on microscopic considerations we identify generic scaling expressions for the typical buckling radius and helical pitch as a function of the density and interaction potential of the constituent particles.


Asunto(s)
Cristales Líquidos/química , Fenómenos Mecánicos , Conformación Molecular , Modelos Moleculares , Nanoporos , Estereoisomerismo , Termodinámica
14.
Artículo en Inglés | MEDLINE | ID: mdl-24580155

RESUMEN

Many structural properties of conventional passive materials are known to arise from the symmetries of their microscopic constituents. By contrast, it is largely unclear how the interplay between particle shape and self-propulsion controls the meso- and macroscale behavior of active matter. Here we use large-scale simulations of homo- and heterogeneous self-propelled particle systems to identify generic effects of broken particle-shape symmetry on collective motion. We find that even small violations of fore-aft symmetry lead to fundamentally different collective behaviors, which may facilitate demixing of differently shaped species as well as the spontaneous formation of stable microrotors. These results suggest that variation of particle shape yields robust physical mechanisms to control self-assembly of active matter, with possibly profound implications for biology and materials design.


Asunto(s)
Comunicación Celular/fisiología , Movimiento Celular/fisiología , Modelos Biológicos , Simulación por Computador
15.
J Chem Phys ; 140(2): 024901, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24437905

RESUMEN

The implications of soft "patchy" interactions on the orientational disorder-order transition of strongly elongated colloidal rods and flat disks is studied within a simple Onsager-van der Waals density functional theory. The theory provides a generic framework for studying the liquid crystal phase behaviour of highly anisometric cylindrical colloids which carry a distinct geometrical pattern of repulsive or attractive soft interactions localized on the particle surface. In this paper, we apply our theory to the case of charged rods and disks for which the local electrostatic interactions can be described by a screened-Coulomb potential. We consider infinitely thin rod like cylinders with a uniform line charge and infinitely thin discotic cylinders with several distinctly different surface charge patterns. Irrespective of the backbone shape the isotropic-nematic phase diagrams of charged colloids feature a generic destabilization of nematic order at low ionic strength, a dramatic narrowing of the biphasic density region, and a reentrant phenomenon upon reducing the electrostatic screening. The low screening regime is characterized by a complete suppression of nematic order in favor of positionally ordered liquid crystal phases.


Asunto(s)
Coloides/química , Cristales Líquidos/química , Transición de Fase , Electricidad Estática , Termodinámica
16.
Artículo en Inglés | MEDLINE | ID: mdl-24032837

RESUMEN

Catching fish with a fishing net is typically done either by dragging a fishing net through quiescent water or by placing a stationary basket trap into a stream. We transfer these general concepts to micron-sized self-motile particles moving in a solvent at low Reynolds number and study their collective trapping behavior by means of computer simulations of a two-dimensional system of self-propelled rods. A chevron-shaped obstacle is dragged through the active suspension with a constant speed v and acts as a trapping "net." Three trapping states can be identified corresponding to no trapping, partial trapping, and complete trapping and their relative stability is studied as a function of the apex angle of the wedge, the swimmer density, and the drag speed v. When the net is dragged along the inner wedge, complete trapping is facilitated and a partially trapped state changes into a complete trapping state if the drag speed exceeds a certain value. Reversing the drag direction leads to a reentrant transition from no trapping to complete trapping and then back to no trapping upon increasing the drag speed along the outer wedge contour. The transition to complete trapping is marked by a templated self-assembly of rods forming polar smectic structures anchored onto the inner contour of the wedge. Our predictions can be verified in experiments of artificial or microbial swimmers confined in microfluidic trapping devices.

17.
J Phys Condens Matter ; 24(46): 464130, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23114651

RESUMEN

Dense suspensions of self-propelled rod-like particles exhibit a fascinating variety of non-equilibrium phenomena. By means of computer simulations of a minimal model for rigid self-propelled colloidal rods with variable shape we explore the generic diagram of emerging states over a large range of rod densities and aspect ratios. The dynamics is studied using a simple numerical scheme for the overdamped noiseless frictional dynamics of a many-body system in which steric forces are dominant over hydrodynamic ones. The different emergent states are identified by various characteristic correlation functions and suitable order parameter fields. At low density and aspect ratio, a disordered phase with no coherent motion precedes a highly cooperative swarming state with giant number fluctuations at large aspect ratio. Conversely, at high densities weakly anisometric particles show a distinct jamming transition whereas slender particles form dynamic laning patterns. In between there is a large window corresponding to strongly vortical, turbulent flow. The different dynamical states should be verifiable in systems of swimming bacteria and artificial rod-like micro-swimmers.

18.
Phys Rev Lett ; 108(26): 268307, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-23005024

RESUMEN

In many applications, it is important to catch collections of autonomously navigating microbes and man-made microswimmers in a controlled way. Using computer simulation of a two-dimensional system of self-propelled rods we show that a static chevron-shaped wall represents an excellent trapping device for self-motile particles. Its catching efficiency can be controlled by varying the apex angle of the trap which defines the sharpness of the cusp. Upon decreasing the angle we find a sequence of three emergent states: no trapping at wide angles followed by a sharp transition towards complete trapping at medium angles and a crossover to partial trapping at small cusp angles. A generic trapping "phase diagram" maps out the conditions at which the capture of active particles at a given density is rendered optimal.


Asunto(s)
Modelos Teóricos , Movimiento (Física) , Transición de Fase
19.
J Chem Phys ; 136(3): 034901, 2012 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-22280777

RESUMEN

Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.


Asunto(s)
Silicatos de Aluminio/química , Simulación de Dinámica Molecular , Arcilla , Coloides/química , Método de Montecarlo , Temperatura
20.
J Phys Condens Matter ; 23(19): 194107, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21525561

RESUMEN

We consider the interaction potential between two chiral rod-like colloids which consist of a thin cylindrical backbone decorated with a helical charge distribution on the cylinder surface. For sufficiently slender helical rods a simple scaling expression is derived which relates the chiral 'twisting' potential to the microscopic properties of the particles, such as the internal helical pitch, charge density and electrostatic screening parameter. To predict the behaviour of the macroscopic cholesteric pitch of the fluid bulk phase we invoke a simple second-virial theory generalized to treat anisotropic states with weakly twisted director fields. It is shown that, while particles with weakly coiled helices always form a cholesteric phase whose helical sense is commensurate with that of the internal helix, more strongly coiled rods lead to the formation of a cholesteric state of opposite sense. The correlation between the helical symmetry at the microscopic and macroscopic scale is found to be very sensitive to the pitch of the Yukawa helix. Mixing helical particles of sufficiently disparate length and internal pitch may give rise to a demixing of the uniform cholesteric phase into two fractions with a different macroscopic pitch. Our findings could be relevant to the interpretation of experimental observations in systems of cellulose and chitin microfibres, DNA and fd virus rods.


Asunto(s)
Coloides/química , Modelos Químicos , Conformación de Ácido Nucleico , Estereoisomerismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA