Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2275, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531896

RESUMEN

Restoring tree cover changes albedo, which is the fraction of sunlight reflected from the Earth's surface. In most locations, these changes in albedo offset or even negate the carbon removal benefits with the latter leading to global warming. Previous efforts to quantify the global climate mitigation benefit of restoring tree cover have not accounted robustly for albedo given a lack of spatially explicit data. Here we produce maps that show that carbon-only estimates may be up to 81% too high. While dryland and boreal settings have especially severe albedo offsets, it is possible to find places that provide net-positive climate mitigation benefits in all biomes. We further find that on-the-ground projects are concentrated in these more climate-positive locations, but that the majority still face at least a 20% albedo offset. Thus, strategically deploying restoration of tree cover for maximum climate benefit requires accounting for albedo change and we provide the tools to do so.

3.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210067, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373912

RESUMEN

Reforestation is one of our most promising natural climate solutions, and one that addresses the looming biodiversity crisis. Tree planting can catalyse forest community reassembly in degraded landscapes where natural regeneration is slow, however, tree survival rates vary remarkably across projects. Building a trait-based framework for tree survival could streamline species selection in a way that generalizes across ecosystems, thereby increasing the effectiveness of the global restoration movement. We investigated how traits mediated seedling survival in a tropical dry forest restoration, and how traits were coordinated across plant structures. We examined growth and survival of 14 species for 2 years and measured six below-ground and 22 above-ground traits. Species-level survival ranged widely from 7.8% to 90.1%, and a model including growth rate, below-ground traits and their interaction explained more than 73% of this variation. A strong interaction between below-ground traits and growth rate indicated that selecting species with fast growth rates can promote establishment, but this effect was most apparent for species that invest in thick fine roots and deep root structures. Overall, results emphasize the prominent role of below-ground traits in determining early restoration outcomes, and highlight little above- and below-ground trait coordination, providing a path forward for tropical dry forest restoration efforts. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Árboles , Bosques , Biodiversidad , Plantones , Clima Tropical
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210077, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373915

RESUMEN

Forest restoration is increasingly heralded as a global strategy to conserve biodiversity and mitigate climate change, yet long-term studies that compare the effects of different restoration strategies on tree recruit demographics are lacking. We measured tree recruit survival and growth annually in three restoration treatments-natural regeneration, applied nucleation and tree plantations-replicated at 13 sites in southern Costa Rica-and evaluated the changes over a decade. Early-successional seedlings had 14% higher survival probability in the applied nucleation than natural regeneration treatments. Early-successional sapling growth rates were initially 227% faster in natural regeneration and 127% faster in applied nucleation than plantation plots but converged across restoration treatments over time. Later-successional seedling and sapling survival were similar across treatments but later-successional sapling growth rates were 39% faster in applied nucleation than in plantation treatments. Results indicate that applied nucleation was equally or more effective in enhancing survival and growth of naturally recruited trees than the more resource-intensive plantation treatment, highlighting its promise as a restoration strategy. Finally, tree recruit dynamics changed quickly over the 10-year period, underscoring the importance of multi-year studies to compare restoration interventions and guide ambitious forest restoration efforts planned for the coming decades. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Clima Tropical , Biodiversidad , Bosques , Plantones
5.
Ecol Lett ; 25(12): 2637-2650, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257904

RESUMEN

Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.


Asunto(s)
Sequías , Hojas de la Planta , Clima Tropical , Filogenia , Hojas de la Planta/fisiología , Xilema
6.
Sci Rep ; 12(1): 13452, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927554

RESUMEN

Reversing large-scale habitat degradation and deforestation goes beyond what can be achieved by site-level ecological restoration and a landscape ecology perspective is fundamental. Here we assess the relative importance of tree cover and its configuration on forest-dependent birds and late-successional tree seedlings in restoration sites in southern Costa Rica. The abundance and species richness of birds increased in landscapes with more corridors, higher tree cover, and lower levels of fragmentation, highlighting the importance of riparian corridors for connectivity, and continuous tree cover as suitable habitat. Landscape variables affected abundance and species richness of seedlings similarly, but effects were weaker, possibly because seedlings face establishment limitation in addition to dispersal limitation. Moreover, the scale of landscape effects on seedlings was small, likely because proximal individual trees can significantly influence recruitment in restoration plots. Results underscore the importance of incorporating landscape-level metrics to restoration projects, as knowing the extent, and how the landscape may affect restoration outcomes can help to infer what kind of species will arrive to restoration plots.


Asunto(s)
Bosques , Clima Tropical , Animales , Aves , Conservación de los Recursos Naturales , Ecosistema , Plantones , Árboles
7.
Oecologia ; 197(3): 795-806, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34613464

RESUMEN

Humans are transforming the ecology of the Earth through rapid changes in land use and climate. These changes can affect tropical forest structure, dynamics and diversity. While numerous studies have focused on diversity metrics, other aspects of forest function, such as long-term biomass dynamics, are often less considered. We evaluated plant community structure change (i.e., abundance, diversity, composition, and aboveground biomass) in a 2.25 ha forest dynamics plot located within a ~ 365 ha reserve in southern Costa Rica. We censused, mapped and identified to species all plants ≥ 5 cm diameter at breast height (DBH) in three surveys spanning 2010-2020. While there were no changes in late-successional species diversity, there were marked changes in overall species composition and biomass. Abundance of large (≥ 40 cm DBH) old-growth dense-wooded trees (e.g., Lauraceae, Rosaceae) decreased dramatically (27%), leading to major biomass decline over time, possibly driven by recent and recurrent drought events. Gaps created by large trees were colonized by early-successional species, but these recruits did not make up for the biomass lost. Finally, stem abundance increased by 20%, driven by increasing dominance of Hampea appendiculata. While results suggest this reserve may effectively conserve overall plant diversity, this may mask other key shifts such as large aboveground biomass loss. If this pattern is pervasive across tropical forest reserves, it could hamper efforts to preserve forest structure and ecosystem services (e.g., carbon storage). Monitoring programs could better assess carbon trends in reserves over time simply by tracking large tree dynamics.


Asunto(s)
Ecosistema , Árboles , Biomasa , Bosques , Humanos , Clima Tropical
8.
Ecol Appl ; 30(7): e02139, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32335980

RESUMEN

Both dispersal- and niche-based factors can impose major barriers on tree establishment. Our understanding of how these factors interact to determine recruitment rates is based primarily on findings from mature tropical forests, despite the fact that a majority of tropical forests are now secondary. Consequently, factors influencing seed limitation and the seed-to-seedling transition (STS) in disturbed landscapes, and how those factors shift during succession, are not well understood. We used a 3.5-yr record of seed rain and seedling establishment to investigate factors influencing tree recruitment after a decade of recovery in a tropical wet forest restoration experiment in southern Costa Rica. We asked (1) how do a range of restoration treatments (natural regeneration, applied nucleation, plantation), canopy cover, and life-history traits influence the STS and (2) how do seed and establishment limitation (lack of seed arrival or lack of seedling recruitment, respectively) influence vegetation recovery within restoration treatments as compared to remnant forest? We did not observe any differences in STS rates across restoration treatments. However, STS rates were lowest in adjacent later successional remnant forests, where seed source availability did not highly limit seed arrival, underscoring that niche-based processes may increasingly limit recruitment as succession unfolds. Additionally, larger-seeded species had consistently higher STS rates across treatments and remnant forests, though establishment limitation for these species was lowest in the remnant forests. Species were generally seed limited and almost all were establishment limited; these patterns were consistent across treatments. However, our results suggest that differences in recruitment rates could be driven by differential dispersal to treatments with higher canopy cover. We found evidence that barriers to recruitment shift during succession, with the influence of seed limitation, mediated by species-level seed deposition rates, giving way to niche-based processes. However, establishment limitation was lowest in the remnant forests for large-seeded and late successional species, highlighting the importance of habitat specialization and life-history traits in dictating recruitment dynamics. Overall, results demonstrate that active restoration approaches such as tree planting catalyze forest recovery, not only by decreasing components of seed limitation, but also by developing canopy cover that increases establishment rates of larger-seeded species.


Asunto(s)
Árboles , Clima Tropical , Costa Rica , Ecosistema , Bosques , Plantones , Semillas
9.
Ecol Appl ; 30(6): e02116, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32145123

RESUMEN

Microclimatic conditions change dramatically as forests age and impose strong filters on community assembly during succession. Light availability is the most limiting environmental factor in tropical wet forest succession; by contrast, water availability is predicted to strongly influence tropical dry forest (TDF) successional dynamics. While mechanisms underlying TDF successional trajectories are not well understood, observational studies have demonstrated that TDF communities transition from being dominated by species with conservative traits to species with acquisitive traits, the opposite of tropical wet forest. Determining how functional traits predict TDF tree species' responses to changing environmental conditions could elucidate mechanisms underlying tree performance during TDF succession. We implemented a 6-ha restoration experiment on a degraded Vertisol in Costa Rica to determine (1) how TDF tree species with different resource-use strategies performed along a successional gradient and (2) how ecophysiological functional traits correlated with tree performance in simulated successional stages. We used two management treatments to simulate distinct successional stages including: clearing all remnant vegetation (early-succession), or interplanting seedlings with no clearing (mid-succession). We crossed these two management treatments (cleared/interplanted) with two species mixes with different resource-use strategies (acquisitive/conservative) to examine their interaction. Overall seedling survival after 2 yr was low, 15.1-26.4% in the four resource-use-strategy × management-treatment combinations, and did not differ between the management treatments or resource-use-strategy groups. However, seedling growth rates were dramatically higher for all species in the cleared treatment (year 1, 69.1% higher; year 2, 143.3% higher) and defined resource-use strategies had some capacity to explain seedling performance. Overall, ecophysiological traits were better predictors of species' growth and survival than resource-use strategies defined by leaf and stem traits such as specific leaf area. Moreover, ecophysiological traits related to water use had a stronger influence on seedling performance in the cleared, early-successional treatment, indicating that the influence of microclimatic conditions on tree survival and growth shifts predictably during TDF succession. Our findings suggest that ecophysiological traits should be explicitly considered to understand shifts in TDF functional composition during succession and that using these traits to design species mixes could greatly improve TDF restoration outcomes.


Asunto(s)
Bosques , Clima Tropical , Costa Rica , Plantones , Árboles
10.
Glob Chang Biol ; 26(5): 3122-3133, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32053250

RESUMEN

Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Costa Rica , Bosques , Hojas de la Planta , Clima Tropical
11.
Conserv Physiol ; 7(1): coy067, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30680216

RESUMEN

Unmanned aircraft systems (UAS; i.e. 'drones') provide new opportunities for data collection in ecology, wildlife biology and conservation. Yet, several studies have documented behavioral or physiological responses to close-proximity UAS flights. We experimentally tested whether American black bears (Ursus americanus) habituate to repeated UAS exposure and whether tolerance levels persist during an extended period without UAS flights. Using implanted cardiac biologgers, we measured heart rate (HR) of five captive bears before and after the first of five flights each day. Spikes in HR, a measure of stress, diminished across the five flights within each day and over the course of 4 weeks of twice-weekly exposure. We halted flights for 118 days, and when we resumed, HR responses were similar to that at the end of the previous trials. Our findings highlight the capacity of a large mammal to become and remain habituated to a novel anthropogenic stimulus in a relatively short time (3-4 weeks). However, such habituation to mechanical noises may reduce their wariness of other human threats. Also, whereas cardiac effects diminished, frequent UAS disturbances may have other chronic physiological effects that were not measured. We caution that the rate of habituation may differ between wild and captive animals: while the captive bears displayed large initial spikes in HR change (albeit not as large as wild bears), these animals were accustomed to regular exposure to humans and mechanical noises that may have hastened habituation to the UAS.

12.
Tree Physiol ; 38(4): 517-530, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29087514

RESUMEN

Tree species in tropical dry forests employ a wide range of strategies to cope with seasonal drought, including regulation of hydraulic function. However, it is uncertain if co-occurring lianas also possess a diversity of strategies. For a taxonomically diverse group of 14 tree and 7 liana species, we measured morphological and hydraulic functional traits during an unusual drought and under non-drought conditions to determine (i) if trees have different water-use strategies than lianas and (ii) if relationships among these traits can be used to better understand how tree and liana species regulate diurnal leaf water potential (Ψdiurnal). In this Costa Rican tropical dry forest, lianas and trees had overlapping water-use strategies, but differed in many leaf economic spectrum traits. Specifically, we found that both lianas and trees employed a diversity of Ψdiurnal regulation strategies, which did not differ statistically. However, lianas and trees did significantly differ in terms of certain traits including leaf area, specific leaf area, petiole length, wood vessel diameter and xylem vessel density. All liana and tree species we measured fell along a continuum of isohydric (partial) to anisohydric (strict or extreme) Ψdiurnal regulation strategies, and leaf area, petiole length, stomatal conductance and wood vessel diameter correlated with these strategies. These findings contribute to a trait-based understanding of how plants regulate Ψdiurnal under both drought stress and sufficient water availability, and underscore that lianas and trees employ a similarly wide range of Ψdiurnal regulation strategies, despite having vastly different growth forms.


Asunto(s)
Hojas de la Planta/fisiología , Árboles/fisiología , Agua/fisiología , Costa Rica
13.
Am J Bot ; 104(3): 399-410, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28341631

RESUMEN

PREMISE OF THE STUDY: The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. METHODS: We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ13C, and δ15N. KEY RESULTS: Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. CONCLUSIONS: Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season.


Asunto(s)
Fabaceae/fisiología , Nitrógeno/metabolismo , Plantones/fisiología , Árboles/fisiología , Biomasa , Fabaceae/crecimiento & desarrollo , Fabaceae/efectos de la radiación , Bosques , Germinación , Luz , Fijación del Nitrógeno , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estaciones del Año , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Suelo/química , Árboles/crecimiento & desarrollo , Árboles/efectos de la radiación , Clima Tropical , Agua/metabolismo
14.
Curr Biol ; 25(17): 2278-83, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26279232

RESUMEN

Unmanned aerial vehicles (UAVs) have the potential to revolutionize the way research is conducted in many scientific fields. UAVs can access remote or difficult terrain, collect large amounts of data for lower cost than traditional aerial methods, and facilitate observations of species that are wary of human presence. Currently, despite large regulatory hurdles, UAVs are being deployed by researchers and conservationists to monitor threats to biodiversity, collect frequent aerial imagery, estimate population abundance, and deter poaching. Studies have examined the behavioral responses of wildlife to aircraft (including UAVs), but with the widespread increase in UAV flights, it is critical to understand whether UAVs act as stressors to wildlife and to quantify that impact. Biologger technology allows for the remote monitoring of stress responses in free-roaming individuals, and when linked to locational information, it can be used to determine events or components of an animal's environment that elicit a physiological response not apparent based on behavior alone. We assessed effects of UAV flights on movements and heart rate responses of free-roaming American black bears. We observed consistently strong physiological responses but infrequent behavioral changes. All bears, including an individual denned for hibernation, responded to UAV flights with elevated heart rates, rising as much as 123 beats per minute above the pre-flight baseline. It is important to consider the additional stress on wildlife from UAV flights when developing regulations and best scientific practices.


Asunto(s)
Frecuencia Cardíaca , Tecnología de Sensores Remotos/efectos adversos , Ursidae/fisiología , Aeronaves , Animales , Femenino , Masculino , Minnesota , Estrés Fisiológico
15.
Oecologia ; 157(3): 459-71, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18612654

RESUMEN

The invasion of non-native plants can alter the diversity and activity of soil microorganisms and nutrient cycling within forests. We used field studies to analyze the impact of a successful invasive groundcover, Alliaria petiolata, on fungal diversity, soil nutrient availability, and pH in five northeastern US forests. We also used laboratory and greenhouse experiments to test three mechanisms by which A. petiolata may alter soil processes: (1) the release of volatile, cyanogenic glucosides from plant tissue; (2) the exudation of plant secondary compounds from roots; and (3) the decomposition of litter. Fungal community composition was significantly different between invaded and uninvaded soils at one site. Compared to uninvaded plots, plots invaded by A. petiolata were consistently and significantly higher in N, P, Ca and Mg availability, and soil pH. In the laboratory, the release of volatile compounds from the leaves of A. petiolata did not significantly alter soil N availability. Similarly, in the greenhouse, the colonization of native soils by A. petiolata roots did not alter soil nutrient cycling, implying that the exudation of secondary compounds has little effect on soil processes. In a leaf litter decomposition experiment, however, green rosette leaves of A. petiolata significantly increased the rate of decomposition of native tree species. The accelerated decomposition of leaf litter from native trees in the presence of A. petiolata rosette leaves shows that the death of these high-nutrient-content leaves stimulates decomposition to a greater extent than any negative effect that secondary compounds may have on the activity of the microbes decomposing the native litter. The results presented here, integrated with recent related studies, suggest that this invasive plant may change soil nutrient availability in such a way as to create a positive feedback between site occupancy and continued proliferation.


Asunto(s)
Brassicaceae/fisiología , Magnoliopsida/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Suelo/análisis , Tracheophyta/fisiología , Árboles/fisiología , Análisis de Varianza , Biodiversidad , Biomasa , Hongos/aislamiento & purificación , Hongos/fisiología , Nitrógeno/análisis , Fósforo/análisis , Hojas de la Planta/metabolismo , Microbiología del Suelo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...