Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236087

RESUMEN

We present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.25-keV photons/ns at the 400 µm diameter sample.

2.
Rev Sci Instrum ; 93(12): 123902, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586918

RESUMEN

This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.

3.
Rev Sci Instrum ; 92(5): 053904, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243269

RESUMEN

We present the results of experiments to produce a 10 ns-long, quasi-monochromatic x-ray source. This effort is needed to support time-resolved x-ray diffraction (XRDt) measurements of phase transitions during laser-driven dynamic compression experiments at the National Ignition Facility. To record XRDt of phase transitions as they occur, we use high-speed (∼1 ns) gated hybrid CMOS detectors, which record multiple frames of data over a timescale of a few to tens of ns. Consequently, to make effective use of these imagers, XRDt needs the x-ray source to be narrow in energy and uniform in time as long as the sensors are active. The x-ray source is produced by a laser irradiated Ge foil. Our results indicate that the x-ray source lasts during the whole duration of the main laser pulse. Both time-resolved and time-integrated spectral data indicate that the line emission is dominated by the He-α complex over higher energy emission lines. Time-integrated spectra agree well with a one-dimensional Cartesian simulation using HYDRA that predicts a conversion efficiency of 0.56% when the incident intensity is 2 × 1015 W/cm2 on a Ge backlighter.

4.
Rev Sci Instrum ; 92(4): 044708, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243427

RESUMEN

We describe a method of analyzing gate profile data for ultrafast x-ray imagers that allows pixel-by-pixel determination of temporal sensitivity in the presence of substantial background oscillations. With this method, systematic timing errors in gate width and gate arrival time of up to 1 ns (in a 2 ns wide gate) can be removed. In-sensor variations in gate arrival and gate width are observed, with variations in each up to 0.5 ns. This method can be used to estimate the coarse timing of the sensor, even if errors up to several ns are present.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...