Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(20): 4135-4144, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38712466

RESUMEN

Herein, we present an innovative synthetic approach for producing a diverse set of biobased oligomers. This method begins with olive oil and employs a wide variety of commercially available amino acids (AAs) as bio-organocatalysts, in addition to tetrabutylammonium iodide (TBAI) as a cocatalyst, to synthesize various biobased oligomers. These biobased oligomers were strategically prepared starting from epoxidized olive oil (EOO) and a variety of cyclic anhydrides (phthalic, PA; maleic, MA; succinic, SA; and glutaric, GA). Among the amino acids tested as bio-organocatalysts, L-glutamic acid (L-Glu) showed the best performance for the synthesis of both poly(EOO-co-PA) and poly(EOO-co-MA), exhibiting 100% conversion at 80 °C in 2 hours, whereas the formation of poly(EOO-co-SA) and poly(EOO-co-GA) required more extreme reaction conditions (72 hours under toluene reflux conditions). Likewise, we have succeeded in obtaining the trans isomer exclusively for the MA based-oligomer within the same synthetic framework. The obtained oligomers were extensively characterized using techniques including NMR, FT-IR, GPC and TGA. A series of computational simulations based on density functional theory (DFT) and post-Hartree Fock (post-HF) methods were performed to corroborate our experimental findings and to obtain an understanding of the reaction mechanisms.


Asunto(s)
Aminoácidos , Polimerizacion , Catálisis , Aminoácidos/química , Aminoácidos/síntesis química , Tecnología Química Verde , Aceites de Plantas/química , Polímeros/química , Polímeros/síntesis química , Estructura Molecular , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/síntesis química
2.
ACS Omega ; 8(24): 21540-21548, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360442

RESUMEN

The transformation of cooking oils and their waste into polyesters is a challenge for circular chemistry. Herein, we have used epoxidized olive oil (EOO), obtained from cooking olive oil (COO), and various cyclic anhydrides (such as phthalic anhydride PA, maleic anhydride MA, and succinic anhydride SA) as raw materials for the preparation of new bio-based polyesters. For the synthesis of these materials, we have used the bis(guanidine) organocatalyst 1 and tetrabutylammonium iodide (Bu4NI) as cocatalyst. The optimal reaction conditions for the preparation of poly(EOO-co-PA) and poly(EOO-co-MA) were 80 °C for 5 h using toluene as solvent; however, the synthesis of poly(EOO-co-SA) required more extreme reaction conditions. Furthermore, we have exclusively succeeded in obtaining the trans isomer for MA-polyester. The obtained biopolyesters were characterized by NMR, Fourier transform infrared, thermogravimetric analysis, and scanning electron microscopy analyses. Since there are few examples of functionalized and defined compounds based on olive oil, it is innovative and challenging to transform these natural-based compounds into products with high added value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...