Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 177, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792683

RESUMEN

Intramembrane proteases play a pivotal role in biology and medicine, but how these proteases decode cleavability of a substrate transmembrane (TM) domain remains unclear. Here, we study the role of conformational flexibility of a TM domain, as determined by deuterium/hydrogen exchange, on substrate cleavability by γ-secretase in vitro and in cellulo. By comparing hybrid TMDs based on the natural amyloid precursor protein TM domain and an artificial poly-Leu non-substrate, we find that substrate cleavage requires conformational flexibility within the N-terminal half of the TMD helix (TM-N). Robust cleavability also requires the C-terminal TM sequence (TM-C) containing substrate cleavage sites. Since flexibility of TM-C does not correlate with cleavage efficiency, the role of the TM-C may be defined mainly by its ability to form a cleavage-competent state near the active site, together with parts of presenilin, the enzymatic component of γ-secretase. In sum, cleavability of a γ-secretase substrate appears to depend on cooperating TM domain segments, which deepens our mechanistic understanding of intramembrane proteolysis.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Precursor de Proteína beta-Amiloide , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteolisis , Dominios Proteicos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Dominio Catalítico
2.
IUCrJ ; 9(Pt 6): 778-791, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36381150

RESUMEN

Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance (Klebsiella pneumoniae CTX-M-14 ß-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required.

3.
Commun Biol ; 5(1): 805, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953531

RESUMEN

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Sitio Alostérico , Antivirales/farmacología , Proteasas Similares a la Papaína de Coronavirus , Humanos , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2
4.
Sci Rep ; 12(1): 5510, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365689

RESUMEN

ß-lactamases are a major cause of rapidly emerging and spreading antibiotic resistance. Currently ß-lactamase inhibitors (BLIs) in clinical use act only on Ambler Class A, C and some class D lactamases. The urgent need to identify new BLIs recently lead to FDA approval of boron-based compounds BLIs, e.g. Vaborbactam. The boron-based proteasome inhibitors Bortezomib and Ixazomib are used in cancer therapy as multiple myeloma drugs but they also bind to Ser-/Thr- proteases. In this study we show the crystal structures of the ß-lactamase CTX-M-14 with covalently bound Bortezomib and Ixazomib at high resolutions of 1.3 and 1.1 Å, respectively. Ixazomib is well defined in electron density whereas Bortezomib show some disorder which corresponds to weaker inhibition efficiency observed for Ixazomib. Both inhibitors mimic the deacylation transition state of ß-lactam hydrolysis, because they replace the deacylating water molecule. We further investigate differences in binding of Bortezomib/Ixazomib to CTX-M-14 and its target proteases as well as known ß-lactamase drugs. Our findings can help to use Bortezomib/Ixazomib as lead compounds for development of new BLIs.


Asunto(s)
Inhibidores de Proteasoma , Inhibidores de beta-Lactamasas , Boro , Compuestos de Boro , Bortezomib/farmacología , Bortezomib/uso terapéutico , Glicina/análogos & derivados , Inhibidores de Proteasoma/farmacología , Inhibidores de beta-Lactamasas/farmacología
5.
FEBS J ; 289(2): 507-518, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314575

RESUMEN

Bradyrhizobium diazoefficiens, a bacterial symbiont of soybean and other leguminous plants, enters a nodulation-promoting genetic programme in the presence of host-produced flavonoids and related signalling compounds. Here, we describe the crystal structure of an isoflavonoid-responsive regulator (FrrA) from Bradyrhizobium, as well as cocrystal structures with inducing and noninducing ligands (genistein and naringenin, respectively). The structures reveal a TetR-like fold whose DNA-binding domain is capable of adopting a range of orientations. A single molecule of either genistein or naringenin is asymmetrically bound in a central cavity of the FrrA homodimer, mainly via C-H contacts to the π-system of the ligands. Strikingly, however, the interaction does not provoke any conformational changes in the repressor. Both the flexible positioning of the DNA-binding domain and the absence of structural change upon ligand binding are corroborated by small-angle X-ray scattering (SAXS) experiments in solution. Together with a model of the promoter-bound state of FrrA our results suggest that inducers act as a wedge, preventing the DNA-binding domains from moving close enough together to interact with successive positions of the major groove of the palindromic operator.


Asunto(s)
Proteínas de Unión al ADN/genética , Flavonoides/genética , Glycine max/genética , Proteínas Ribosómicas/genética , Sitios de Unión/genética , Bradyrhizobium/genética , Bradyrhizobium/patogenicidad , Cristalografía por Rayos X , Proteínas de Unión al ADN/ultraestructura , Flavonoides/biosíntesis , Regulación Bacteriana de la Expresión Génica/genética , Ligandos , Unión Proteica/genética , Conformación Proteica , Proteínas Ribosómicas/ultraestructura , Glycine max/microbiología
6.
Sci Rep ; 11(1): 12255, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112823

RESUMEN

Previously, we reported the isolation of a quorum quenching protein (QQ), designated GqqA, from Komagataeibacter europaeus CECT 8546 that is highly homologous to prephenate dehydratases (PDT) (Valera et al. in Microb Cell Fact 15, 88. https://doi.org/10.1186/s12934-016-0482-y , 2016). GqqA strongly interfered with N-acyl-homoserine lactone (AHL) quorum sensing signals from Gram-negative bacteria and affected biofilm formation in its native host strain Komagataeibacter europaeus. Here we present and discuss data identifying GqqA as a novel acylase. ESI-MS-MS data showed unambiguously that GqqA hydrolyzes the amide bond of the acyl side-chain of AHL molecules, but not the lactone ring. Consistent with this observation the protein sequence does not carry a conserved Zn2+ binding motif, known to be essential for metal-dependent lactonases, but in fact harboring the typical periplasmatic binding protein domain (PBP domain), acting as catalytic domain. We report structural details for the native structure at 2.5 Å resolution and for a truncated GqqA structure at 1.7 Å. The structures obtained highlight that GqqA acts as a dimer and complementary docking studies indicate that the lactone ring of the substrate binds within a cleft of the PBP domain and interacts with polar residues Y16, S17 and T174. The biochemical and phylogenetic analyses imply that GqqA represents the first member of a novel type of QQ family enzymes.


Asunto(s)
Acetobacteraceae/enzimología , Proteínas Bacterianas/metabolismo , Prefenato Deshidratasa/metabolismo , Acetobacteraceae/clasificación , Acetobacteraceae/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Modelos Moleculares , Prefenato Deshidratasa/química , Prefenato Deshidratasa/genética , Conformación Proteica , Percepción de Quorum , Especificidad por Sustrato
7.
Science ; 372(6542): 642-646, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33811162

RESUMEN

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Asunto(s)
Sitio Alostérico , Antivirales/química , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Desarrollo de Medicamentos , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Animales , Antivirales/farmacología , Chlorocebus aethiops , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
8.
Freshw Biol ; 66(1): 169-176, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33510548

RESUMEN

Cyanobacteria are one of the oldest organisms on Earth and they originated at a time when damaging ultraviolet (UV) C radiation still reached the surface. Their long evolution led to several adaptations to avoid deleterious effects caused by exposure to solar UV radiation. Synthesis of sunscreen substances, such as mycosporine-like amino acids (MAAs), allows them to photosynthesise with reduced risk of cell damage. The interplay of solar UV radiation and MAAs is well documented for cyanobacteria in the plankton realm, but little is known for those in the benthic realm, particularly of clear alpine lakes.Here, we assessed the temporal dynamics of MAAs in the benthic algal community of one clear alpine lake dominated by cyanobacteria during the ice-free season and along a depth gradient using state-of-the-art analytical methods (high-performance liquid chromatography, nuclear magnetic resonance, liquid chromatography-mass spectrometry). We differentiated between the epilithic cyanobacterial community and the overlying loosely attached filamentous cyanobacteria, as we expected they will have an important shielding/shading effect on the former. We hypothesised that in contrast to the case of phytoplankton, benthic cyanobacteria will show less pronounced temporal changes in MAAs concentration in response to changes in solar UV exposure.Three UV-absorbing substances were present in both types of communities, whereby all were unknown. The chemical structure of the dominant unknown substance (maximum absorption at 334 nm) resulted in the identification of a novel MAA that we named aplysiapalythine-D for its similarity to the previously described aplysiapalythine-C.Chlorophyll-a-specific MAA concentrations for epilithic and filamentous cyanobacteria showed a significant decrease with depth, although only traces were found in the former community. The temporal dynamics in MAA concentrations of filamentous cyanobacteria showed no significant variations during the ice-free season.Our result on the low temporal MAA dynamics agrees with the reduced growth rates of benthic cyanobacteria reported for cold ecosystems. The permanent presence of this community, which is adapted to the high UV levels characteristic of clear alpine lakes, probably represents the most important primary producers of these ecosystems.

9.
Nat Commun ; 9(1): 4025, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279492

RESUMEN

The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a ß-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

10.
Nucleic Acids Res ; 33(Web Server issue): W532-4, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15980528

RESUMEN

Comparative analysis of genomic sequences is a powerful approach to discover functional sites in these sequences. Herein, we present a WWW-based software system for multiple alignment of genomic sequences. We use the local alignment tool CHAOS to rapidly identify chains of pairwise similarities. These similarities are used as anchor points to speed up the DIALIGN multiple-alignment program. Finally, the visualization tool ABC is used for interactive graphical representation of the resulting multiple alignments. Our software is available at Göttingen Bioinformatics Compute Server (GOBICS) at http://dialign.gobics.de/chaos-dialign-submission.


Asunto(s)
Genómica/métodos , Alineación de Secuencia/métodos , Programas Informáticos , Gráficos por Computador , Internet , Interfaz Usuario-Computador
11.
Bioinformatics ; 21(7): 1271-3, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15546937

RESUMEN

Most multi-alignment methods are fully automated, i.e. they are based on a fixed set of mathematical rules. For various reasons, such methods may fail to produce biologically meaningful alignments. Herein, we describe a semi-automatic approach to multiple sequence alignment where biological expert knowledge can be used to influence the alignment procedure. The user can specify parts of the sequences that are biologically related to each other; our software program uses these sites as anchor points and creates a multiple alignment respecting these user-defined constraints. By using known functionally, structurally or evolutionarily related positions of the input sequences as anchor points, our method can produce alignments that reflect the true biological relationships among the input sequences more accurately than fully automated procedures can do.


Asunto(s)
Algoritmos , Proteínas/química , Proteínas/clasificación , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas/análisis , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...