Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076786

RESUMEN

Many animals, including humans, navigate their surroundings by visual input, yet we understand little about how visual information is transformed and integrated by the navigation system. In Drosophila melanogaster, compass neurons in the donut-shaped ellipsoid body of the central complex generate a sense of direction by integrating visual input from ring neurons, a part of the anterior visual pathway (AVP). Here, we densely reconstruct all neurons in the AVP using FlyWire, an AI-assisted tool for analyzing electron-microscopy data. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons, which connect the medulla in the optic lobe to the small unit of anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons, which connect the anterior optic tubercle to the bulb neuropil; and ring neurons, which connect the bulb to the ellipsoid body. Based on neuronal morphologies, connectivity between different neural classes, and the locations of synapses, we identified non-overlapping channels originating from four types of MeTu neurons, which we further divided into ten subtypes based on the presynaptic connections in medulla and postsynaptic connections in AOTUsu. To gain an objective measure of the natural variation within the pathway, we quantified the differences between anterior visual pathways from both hemispheres and between two electron-microscopy datasets. Furthermore, we infer potential visual features and the visual area from which any given ring neuron receives input by combining the connectivity of the entire AVP, the MeTu neurons' dendritic fields, and presynaptic connectivity in the optic lobes. These results provide a strong foundation for understanding how distinct visual features are extracted and transformed across multiple processing stages to provide critical information for computing the fly's sense of direction.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37874372

RESUMEN

Most insects can detect the pattern of polarized light in the sky with the dorsal rim area in their compound eyes and use this visual information to navigate in their environment by means of 'celestial' polarization vision. 'Non-celestial polarization vision', in contrast, refers to the ability of arthropods to analyze polarized light by means of the 'main' retina, excluding the dorsal rim area. The ability of using the main retina for polarization vision has been attracting sporadic, but steady attention during the last decade. This special issue of the Journal of Comparative Physiology A presents recent developments with a collection of seven original research articles, addressing different aspects of non-celestial polarization vision in crustaceans and insects. The contributions cover different sources of linearly polarized light in nature, the underlying retinal and neural mechanisms of object detection using polarization vision and the behavioral responses of arthropods to polarized reflections from water.


Asunto(s)
Artrópodos , Animales , Visión Ocular , Insectos , Retina/fisiología , Luz
3.
Artículo en Inglés | MEDLINE | ID: mdl-37796303

RESUMEN

Active locomotion plays an important role in the life of many animals, permitting them to explore the environment, find vital resources, and escape predators. Most insect species rely on a combination of visual cues such as celestial bodies, landmarks, or linearly polarized light to navigate or orient themselves in their surroundings. In nature, linearly polarized light can arise either from atmospheric scattering or from reflections off shiny non-metallic surfaces like water. Multiple reports have described different behavioral responses of various insects to such shiny surfaces. Our goal was to test whether free-flying Drosophila melanogaster, a molecular genetic model organism and behavioral generalist, also manifests specific behavioral responses when confronted with such polarized reflections. Fruit flies were placed in a custom-built arena with controlled environmental parameters (temperature, humidity, and light intensity). Flight detections and landings were quantified for three different stimuli: a diffusely reflecting matt plate, a small patch of shiny acetate film, and real water. We compared hydrated and dehydrated fly populations, since the state of hydration may change the motivation of flies to seek or avoid water. Our analysis reveals for the first time that flying fruit flies indeed use vision to avoid flying over shiny surfaces.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila melanogaster/fisiología , Drosophila/fisiología , Visión Ocular , Luz , Insectos , Agua , Vuelo Animal/fisiología
4.
Elife ; 102021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34913436

RESUMEN

Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.


Asunto(s)
Color , Drosophila melanogaster/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Sinapsis/fisiología , Vías Visuales , Animales , Encéfalo/fisiología , Femenino , Microscopía Electrónica , Neuronas/fisiología , Células Fotorreceptoras de Invertebrados/ultraestructura
5.
Curr Biol ; 31(14): R909-R912, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34314720

RESUMEN

Colour vision involves colour-opponent cells, which are excited and inhibited by different wavelengths. Synaptic interconnections between Drosophila Dm8 cells are required for forming spatio-chromatic receptive fields with a center and surround of opposing polarity which can invert, depending on the stimulus.


Asunto(s)
Percepción de Color , Visión de Colores , Animales , Color , Lóbulo Óptico de Animales no Mamíferos
6.
Curr Biol ; 31(8): R378-R381, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33905693

RESUMEN

The molecular genetic dissection of Drosophila colour vision circuitry reveals converging pathways previously categorized as being chromatic versus achromatic. Amacrine-like Dm8 cells receive direct and indirect inputs with different spectral sensitivity tuning, thereby forming the second stage of colour-opponent processing.


Asunto(s)
Color
7.
Arthropod Struct Dev ; 61: 101012, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33618155

RESUMEN

The retinal mosaics of many insects contain different ommatidial subtypes harboring photoreceptors that are both molecularly and morphologically specialized for comparing between different wavelengths versus detecting the orientation of skylight polarization. The neural circuits underlying these different inputs and the characterization of their specific cellular elements are the subject of intense research. Here we review recent progress on the description of both assembly and function of color and skylight polarization circuitry, by focusing on two cell types located in the distal portion of the medulla neuropil of the fruit fly Drosophila melanogaster's optic lobes, called Dm8 and Dm9. In the main part of the retina, Dm8 cells fall into two molecularly distinct subtypes whose center becomes specifically connected to either one of randomly distributed 'pale' or 'yellow' R7 photoreceptor fates during development. Only in the 'dorsal rim area' (DRA), both polarization-sensitive R7 and R8 photoreceptors are connected to different Dm8-like cell types, called Dm-DRA1 and Dm-DRA2, respectively. An additional layer of interommatidial integration is introduced by Dm9 cells, which receive input from multiple neighboring R7 and R8 cells, as well as providing feedback synapses back into these photoreceptors. As a result, the response properties of color-sensitive photoreceptor terminals are sculpted towards being both maximally decorrelated, as well as harboring several levels of opponency (both columnar as well as intercolumnar). In the DRA, individual Dm9 cells appear to mix both polarization and color signals, thereby potentially serving as the first level of integration of different celestial stimuli. The molecular mechanisms underlying the establishment of these synaptic connections are beginning to be revealed, by using a combination of live imaging, developmental genetic studies, and cell type-specific transcriptomics.


Asunto(s)
Drosophila melanogaster , Células Fotorreceptoras de Invertebrados , Animales , Drosophila melanogaster/fisiología , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Células Fotorreceptoras de Invertebrados/fisiología , Sinapsis/fisiología
8.
iScience ; 23(10): 101590, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33205011

RESUMEN

One hallmark of the visual system is a strict retinotopic organization from the periphery toward the central brain, where functional imaging in Drosophila revealed a spatially accurate representation of visual cues in the central complex. This raised the question how, on a circuit level, the topographic features are implemented, as the majority of visual neurons enter the central brain converge in optic glomeruli. We discovered a spatial segregation of topographic versus nontopographic projections of distinct classes of medullo-tubercular (MeTu) neurons into a specific visual glomerulus, the anterior optic tubercle (AOTU). These parallel channels synapse onto different tubercular-bulbar (TuBu) neurons, which in turn relay visual information onto specific central complex ring neurons in the bulb neuropil. Hence, our results provide the circuit basis for spatially accurate representation of visual information and highlight the AOTU's role as a prominent relay station for spatial information from the retina to the central brain.

9.
J Neurosci Methods ; 340: 108747, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339523

RESUMEN

BACKGROUND: The quantitative study of behavioral responses to visual stimuli provides crucial information about the computations executed by neural circuits. Insects have long served as powerful model systems, either when walking on air suspended balls (spherical treadmill), or flying while glued to a needle (virtual flight arena). NEW METHOD: Here we present detailed instructions for 3D-printing and assembly of arenas optimized for visually guided navigation, including codes for presenting both celestial and panorama cues. These modular arenas can be used either as virtual flight arenas, or as spherical treadmills and consist entirely of commercial and 3D-printed components placed in a temperature and humidity controlled environment. COMPARISON TO EXISTING METHOD(S): Previous assays often include a combination of rather cost-intensive and technically complex, custom-built mechanical, electronic, and software components. Implementation amounts to a major challenge when working in an academic environment without the support of a professional machine shop. RESULTS: Robust optomotor responses are induced in flyingDrosophila by displaying moving stripes in a cylinder surrounding the magnetically tethered fly. Similarly, changes in flight heading are induced by presenting changes in the orientation of linearly polarized UV light presented from above. Finally, responses to moving patterns are induced when individual flies are walking on an air-suspended ball. CONCLUSION: These modular assays allow for the investigation of a diverse combination navigational cues (sky and panorama) in both flying and walking flies. They can be used for the molecular dissection of neural circuitry in Drosophila and can easily be rescaled for accommodating other insects.


Asunto(s)
Drosophila melanogaster , Caminata , Animales , Señales (Psicología) , Drosophila , Orientación
10.
Nat Commun ; 11(1): 1325, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165611

RESUMEN

Brain wiring is remarkably precise, yet most neurons readily form synapses with incorrect partners when given the opportunity. Dynamic axon-dendritic positioning can restrict synaptogenic encounters, but the spatiotemporal interaction kinetics and their regulation remain essentially unknown inside developing brains. Here we show that the kinetics of axonal filopodia restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses. Using 4D imaging in developing Drosophila brains, we show that filopodial kinetics are regulated by autophagy, a prevalent degradation mechanism whose role in brain development remains poorly understood. With surprising specificity, autophagosomes form in synaptogenic filopodia, followed by filopodial collapse. Altered autophagic degradation of synaptic building material quantitatively regulates synapse formation as shown by computational modeling and genetic experiments. Increased filopodial stability enables incorrect synaptic partnerships. Hence, filopodial autophagy restricts inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity.


Asunto(s)
Autofagia , Encéfalo/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Seudópodos/fisiología , Sinapsis/fisiología , Animales , Atención , Axones/fisiología , Proteínas de Drosophila/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Mosaicismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteolisis , Transmisión Sináptica/fisiología
11.
Curr Biol ; 30(2): R78-R81, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31962082

RESUMEN

A new study shows that the synaptically interconnected axon terminals of colour-sensitive fly photoreceptors that sample the same point in visual space receive additional inhibition from surrounding units; the resulting additional chromatic comparisons result in an optimal decorrelation of photoreceptor inputs. There are striking parallels between newly identified horizontal interactions and those mediated by mammalian horizontal cells.


Asunto(s)
Visión de Colores , Animales , Color , Percepción de Color , Drosophila
12.
Artículo en Inglés | MEDLINE | ID: mdl-31811399

RESUMEN

Specialized ommatidia harboring polarization-sensitive photoreceptors exist in the 'dorsal rim area' (DRA) of virtually all insects. Although downstream elements have been described both anatomically and physiologically throughout the optic lobes and the central brain of different species, little is known about their cellular and synaptic adaptations and how these shape their functional role in polarization vision. We have previously shown that in the DRA of Drosophila melanogaster, two distinct types of modality-specific 'distal medulla' cell types (Dm-DRA1 and Dm-DRA2) are post-synaptic to long visual fiber photoreceptors R7 and R8, respectively. Here we describe additional neuronal elements in the medulla neuropil that manifest modality-specific differences in the DRA region, including DRA-specific neuronal morphology, as well as differences in the structure of pre- or post-synaptic membranes. Furthermore, we show that certain cell types (medulla tangential cells and octopaminergic neuromodulatory cells) specifically avoid contacts with polarization-sensitive photoreceptors. Finally, while certain transmedullary cells are specifically absent from DRA medulla columns, other subtypes show specific wiring differences while still connecting the DRA to the lobula complex, as has previously been described in larger insects. This hints towards a complex circuit architecture with more than one pathway connecting polarization-sensitive DRA photoreceptors with the central brain.


Asunto(s)
Encéfalo/fisiología , Drosophila melanogaster/metabolismo , Lóbulo Óptico de Animales no Mamíferos/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Sinapsis/fisiología , Visión Ocular , Percepción Visual , Adaptación Fisiológica , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Lóbulo Óptico de Animales no Mamíferos/citología , Estimulación Luminosa , Vías Visuales/fisiología
13.
Sci Rep ; 9(1): 16773, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727972

RESUMEN

Many navigating insects include the celestial polarization pattern as an additional visual cue to orient their travels. Spontaneous orientation responses of both walking and flying fruit flies (Drosophila melanogaster) to linearly polarized light have previously been demonstrated. Using newly designed modular flight arenas consisting entirely of off-the-shelf parts and 3D-printed components we present individual flying flies with a slow and continuous rotational change in the incident angle of linear polarization. Under such open-loop conditions, single flies choose arbitrary headings with respect to the angle of polarized light and show a clear tendency to maintain those chosen headings for several minutes, thereby adjusting their course to the slow rotation of the incident stimulus. Importantly, flies show the tendency to maintain a chosen heading even when two individual test periods under a linearly polarized stimulus are interrupted by an epoch of unpolarized light lasting several minutes. Finally, we show that these behavioral responses are wavelength-specific, existing under polarized UV stimulus while being absent under polarized green light. Taken together, these findings provide further evidence supporting Drosophila's abilities to use celestial cues for visually guided navigation and course correction.


Asunto(s)
Drosophila melanogaster/fisiología , Orientación Espacial/fisiología , Percepción Visual/fisiología , Animales , Femenino , Vuelo Animal , Luz , Masculino
14.
Curr Biol ; 29(17): 2812-2825.e4, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31402302

RESUMEN

In the fly optic lobe, ∼800 highly stereotypical columnar microcircuits are arranged retinotopically to process visual information. Differences in cellular composition and synaptic connectivity within functionally specialized columns remain largely unknown. Here, we describe the cellular and synaptic architecture in medulla columns located downstream of photoreceptors in the dorsal rim area (DRA), where linearly polarized skylight is detected for guiding orientation responses. We show that only in DRA medulla columns both R7 and R8 photoreceptors target to the bona fide R7 target layer where they form connections with previously uncharacterized, modality-specific Dm neurons: two morphologically distinct DRA-specific cell types (termed Dm-DRA1 and Dm-DRA2) stratify in separate sublayers and exclusively contact polarization-sensitive DRA inputs, while avoiding overlaps with color-sensitive Dm8 cells. Using the activity-dependent GRASP and trans-Tango techniques, we confirm that DRA R7 cells are synaptically connected to Dm-DRA1, whereas DRA R8 form synapses with Dm-DRA2. Finally, using live imaging of ingrowing pupal photoreceptor axons, we show that DRA R7 and R8 termini reach layer M6 sequentially, thus separating the establishment of different synaptic connectivity in time. We propose that a duplication of R7→Dm circuitry in DRA ommatidia serves as an ideal adaptation for detecting linearly polarized skylight using orthogonal e-vector analyzers.


Asunto(s)
Drosophila melanogaster/fisiología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Orientación Espacial , Células Fotorreceptoras de Invertebrados/fisiología , Animales
15.
Front Cell Neurosci ; 12: 50, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29615868

RESUMEN

The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the "Dorsal Rim Area" (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster, we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision.

16.
Cell ; 162(1): 20-2, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140589

RESUMEN

In this issue of Cell, Langen et al. use time-lapse multiphoton microscopy to show how Drosophila photoreceptor growth cones find their targets. Based on the observed dynamics, they develop a simple developmental algorithm recapitulating the highly complex connectivity pattern of these neurons, suggesting a basic framework for establishing wiring specificity.


Asunto(s)
Axones , Ojo Compuesto de los Artrópodos/inervación , Simulación por Computador , Drosophila/crecimiento & desarrollo , Células Fotorreceptoras de Invertebrados/fisiología , Animales
17.
Trends Genet ; 31(6): 316-28, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26025917

RESUMEN

Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here, we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to the habitat and way of life of an animal.


Asunto(s)
Evolución Biológica , Insectos/crecimiento & desarrollo , Mosaicismo , Retina/crecimiento & desarrollo , Animales , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Insectos/clasificación , Insectos/genética , Modelos Genéticos , Células Fotorreceptoras de Invertebrados/metabolismo , Retina/citología , Retina/metabolismo , Rodopsina/genética
18.
Genes Dev ; 28(23): 2565-84, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25452270

RESUMEN

The visual system is a powerful model for probing the development, connectivity, and function of neural circuits. Two genetically tractable species, mice and flies, are together providing a great deal of understanding of these processes. Current efforts focus on integrating knowledge gained from three cross-fostering fields of research: (1) understanding how the fates of different cell types are specified during development, (2) revealing the synaptic connections between identified cell types ("connectomics") by high-resolution three-dimensional circuit anatomy, and (3) causal testing of how identified circuit elements contribute to visual perception and behavior. Here we discuss representative examples from fly and mouse models to illustrate the ongoing success of this tripartite strategy, focusing on the ways it is enhancing our understanding of visual processing and other sensory systems.


Asunto(s)
Retina/citología , Visión Ocular/fisiología , Animales , Conducta Animal/fisiología , Diferenciación Celular , Drosophila , Ratones , Modelos Animales , Retina/embriología , Visión Ocular/genética , Percepción Visual/fisiología
19.
PLoS One ; 9(11): e112092, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25386852

RESUMEN

Arthropod RNA viruses pose a serious threat to human health, yet many aspects of their replication cycle remain incompletely understood. Here we describe a versatile Drosophila toolkit of transgenic, self-replicating genomes ('replicons') from Sindbis virus that allow rapid visualization and quantification of viral replication in vivo. We generated replicons expressing Luciferase for the quantification of viral replication, serving as useful new tools for large-scale genetic screens for identifying cellular pathways that influence viral replication. We also present a new binary system in which replication-deficient viral genomes can be activated 'in trans', through co-expression of an intact replicon contributing an RNA-dependent RNA polymerase. The utility of this toolkit for studying virus biology is demonstrated by the observation of stochastic exclusion between replicons expressing different fluorescent proteins, when co-expressed under control of the same cellular promoter. This process is analogous to 'superinfection exclusion' between virus particles in cell culture, a process that is incompletely understood. We show that viral polymerases strongly prefer to replicate the genome that encoded them, and that almost invariably only a single virus genome is stochastically chosen for replication in each cell. Our in vivo system now makes this process amenable to detailed genetic dissection. Thus, this toolkit allows the cell-type specific, quantitative study of viral replication in a genetic model organism, opening new avenues for molecular, genetic and pharmacological dissection of virus biology and tool development.


Asunto(s)
Infecciones por Alphavirus/genética , Drosophila/virología , Genoma Viral , Virus Sindbis/genética , Replicación Viral/genética , Animales , Animales Modificados Genéticamente , Drosophila/genética , ARN Viral/genética , Replicón/genética
20.
J Neurogenet ; 28(3-4): 348-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24912584

RESUMEN

Linearly polarized light (POL) serves as an important cue for many animals, providing navigational information, as well as directing them toward food sources and reproduction sites. Many insects detect the celestial polarization pattern, or the linearly polarized reflections off of surfaces, such as water. Much progress has been made toward characterizing both retinal detectors and downstream circuit elements responsible for celestial POL vision in different insect species, yet much less is known about the neural basis of how polarized reflections are detected. We previously established a novel, fully automated behavioral assay for studying the spontaneous orientation response of Drosophila melanogaster populations to POL stimuli presented to either the dorsal, or the ventral halves of the retina. We identified separate retinal detectors mediating these responses: the 'Dorsal Rim Area' (DRA), which had long been implicated in celestial POL vision, as well as a previously uncharacterized 'ventral polarization area' (VPA). In this study, we investigate whether DRA and VPA use the same or different downstream circuitry, for mediating spontaneous behavioral responses. We use homozygous mutants, or molecular genetic circuit-breaking tools (silencing, as well as rescue of synaptic activity), in combination with our behavioral paradigm. We show that responses to dorsal versus ventral stimulation involve previously characterized optic lobe neurons, like lamina monopolar cell L2 and medulla cell types Dm8/Tm5c. However, using different experimental conditions, we show that important differences exist between the requirement of these cell types downstream of DRA versus VPA. Therefore, while the neural circuits underlying behavioral responses to celestial and reflected POL cues share important building blocks, these elements play different functional roles within the network.


Asunto(s)
Conducta Animal/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Retina/fisiología , Animales , Señales (Psicología) , Drosophila/fisiología , Orientación/fisiología , Estimulación Luminosa , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...