Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(28): 14164-14173, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239348

RESUMEN

The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/química , Malaria/genética , Plasmodium falciparum/química , Conformación Proteica , Secuencia de Aminoácidos/genética , Animales , Sitios de Unión/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/ultraestructura , Humanos , Cinética , Malaria/parasitología , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/ultraestructura , Unión Proteica
2.
PLoS Negl Trop Dis ; 7(10): e2492, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147171

RESUMEN

Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Descubrimiento de Drogas/métodos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Antiprotozoarios/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Pruebas de Sensibilidad Parasitaria , Unión Proteica , Trypanosoma brucei brucei/crecimiento & desarrollo
3.
J Biol Chem ; 288(2): 1022-31, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23192353

RESUMEN

The ATP-dependent caseinolytic protease, ClpP, is highly conserved in bacteria and in the organelles of different organisms. In cyanobacteria, plant plastids, and the apicoplast of the genus Plasmodium, a noncatalytic paralog of ClpP, termed ClpR, has been identified. ClpRs are found to form heterocomplexes with ClpP resulting in a ClpRP tetradecameric cylinder having less than 14 catalytic triads. The exact role of ClpR in such a complex remains enigmatic. Here we describe the x-ray crystal structure of ClpR protein heptamer from Plasmodium falciparum (PfClpR). This is the first structure of a ClpR protein. The structure shows that the PfClpR monomer adopts a fold similar to that of ClpP, but has a unique motif, which we named the R-motif, forming a ß turn located near the inactive catalytic triad in a three-dimensional space. The PfClpR heptamer exhibits a more open and flat ring than a ClpP heptamer. PfClpR was localized in the P. falciparum apicoplast as is the case of PfClpP. However, biochemical and structural data suggest that, contrary to what has been observed in other organisms, PfClpP and PfClpR do not form a stable heterocomplex in the apicoplast of P. falciparum.


Asunto(s)
Caseínas/metabolismo , Péptido Hidrolasas/metabolismo , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Fluorescente , Modelos Moleculares , Datos de Secuencia Molecular , Orgánulos/enzimología , Péptido Hidrolasas/química , Conformación Proteica , Proteolisis , Homología de Secuencia de Aminoácido
4.
Nat Commun ; 3: 1288, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23250418

RESUMEN

Selective inhibition of protein methyltransferases is a promising new approach to drug discovery. An attractive strategy towards this goal is the development of compounds that selectively inhibit binding of the cofactor, S-adenosylmethionine, within specific protein methyltransferases. Here we report the three-dimensional structure of the protein methyltransferase DOT1L bound to EPZ004777, the first S-adenosylmethionine-competitive inhibitor of a protein methyltransferase with in vivo efficacy. This structure and those of four new analogues reveal remodelling of the catalytic site. EPZ004777 and a brominated analogue, SGC0946, inhibit DOT1L in vitro and selectively kill mixed lineage leukaemia cells, in which DOT1L is aberrantly localized via interaction with an oncogenic MLL fusion protein. These data provide important new insight into mechanisms of cell-active S-adenosylmethionine-competitive protein methyltransferase inhibitors, and establish a foundation for the further development of drug-like inhibitors of DOT1L for cancer therapy.


Asunto(s)
Metiltransferasas/antagonistas & inhibidores , Adenosina/análogos & derivados , Adenosina/farmacología , Unión Competitiva/efectos de los fármacos , Western Blotting , Catálisis , Dominio Catalítico/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina , Humanos , Cinética , Metiltransferasas/metabolismo , Compuestos de Fenilurea/farmacología , Relación Estructura-Actividad , Especificidad por Sustrato , Resonancia por Plasmón de Superficie
5.
Mol Microbiol ; 85(3): 513-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22676716

RESUMEN

The enzymes phosphomannomutase (PMM), phospho-N-acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N-acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose-phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.


Asunto(s)
Fosfoglucomutasa/deficiencia , Fosfotransferasas (Fosfomutasas)/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Glucosa-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Cinética , Manosafosfatos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Fosfotransferasas (Fosfomutasas)/química , Fosfotransferasas (Fosfomutasas)/genética , Conformación Proteica , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
6.
BMC Struct Biol ; 12: 2, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22429898

RESUMEN

BACKGROUND: Plasmodium falciparum is the protozoan parasite primarily responsible for more than one million malarial deaths, annually, and is developing resistance to current therapies. Throughout its lifespan, the parasite is subjected to oxidative attack, so Plasmodium antioxidant defences are essential for its survival and are targets for disease control. RESULTS: To further understand the molecular aspects of the Plasmodium redox system, we solved 4 structures of Plasmodium peroxiredoxins (Prx). Our study has confirmed PvTrx-Px1 to be a hydrogen peroxide (H2O2)-sensitive peroxiredoxin. We have identified and characterized the novel toroid octameric oligomer of PyTrx-Px1, which may be attributed to the interplay of several factors including: (1) the orientation of the conserved surface/buried arginine of the NNLA(I/L)GRS-loop; and (2) the C-terminal tail positioning (also associated with the aforementioned conserved loop) which facilitates the intermolecular hydrogen bond between dimers (in an A-C fashion). In addition, a notable feature of the disulfide bonds in some of the Prx crystal structures is discussed. Finally, insight into the latter stages of the peroxiredoxin reaction coordinate is gained. Our structure of PyPrx6 is not only in the sulfinic acid (RSO2H) form, but it is also with glycerol bound in a way (not previously observed) indicative of product binding. CONCLUSIONS: The structural characterization of Plasmodium peroxiredoxins provided herein provides insight into their oligomerization and product binding which may facilitate the targeting of these antioxidant defences. Although the structural basis for the octameric oligomerization is further understood, the results yield more questions about the biological implications of the peroxiredoxin oligomerization, as multiple toroid configurations are now known. The crystal structure depicting the product bound active site gives insight into the overoxidation of the active site and allows further characterization of the leaving group chemistry.


Asunto(s)
Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Plasmodium/enzimología , Multimerización de Proteína , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Disulfuros/química , Glicerol/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Unión Proteica , Estructura Cuaternaria de Proteína , Ratas , Ácidos Sulfínicos/metabolismo
7.
J Mol Biol ; 415(5): 781-92, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22178476

RESUMEN

The eukaryotic translation initiation factor eIF4E plays key roles in cap-dependent translation and mRNA export. These functions rely on binding the 7-methyl-guanosine moiety (5'cap) on the 5'-end of all mRNAs. eIF4E is regulated by proteins such as eIF4G and eIF4E binding proteins (4EBPs) that bind the dorsal surface of eIF4E, distal to the cap binding site, and modulate cap binding activity. Both proteins increase the affinity of eIF4E for 5'cap. Our understanding of the allosteric effects and structural underpinnings of 4EBP1 or eIF4G binding can be advanced by obtaining structural data on cap-free eIF4E bound to one of these proteins. Here, we report the crystal structure of apo-eIF4E and cap-free eIF4E in complex with a 4EBP1 peptide. We also monitored 4EBP1 binding to cap-free eIF4E in solution using NMR. Together, these studies suggest that 4EBP1 transforms eIF4E into a cap-receptive state. NMR methods were also used to compare the allosteric routes activated by 4EBP1, eIF4G, and the arenavirus Z protein, a negative regulator of cap binding. We observed chemical shift perturbation at the dorsal binding site leading to alterations in the core of the protein, which were ultimately communicated to the unoccupied cap binding site of eIF4E. There were notable similarities between the routes taken by 4EBP1 and eIF4G and differences from the negative regulator Z. Thus, binding of 4EBP1 or eIF4G allosterically drives alterations throughout the protein that increase the affinity of eIF4E for the 5'cap.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Unión al ADN/química , Fosfoproteínas/química , Factores de Transcripción/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Alostérica , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Humanos , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , Factores de Transcripción/metabolismo
8.
BMC Genomics ; 12: 478, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962082

RESUMEN

BACKGROUND: Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the Cryptosporidium parvum kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase. RESULTS: The C. parvum kinome comprises over 70 members, some of which may be promising drug targets. These C. parvum protein kinases include members in the AGC, Atypical, CaMK, CK1, CMGC, and TKL groups; however, almost 35% could only be classified as OPK (other protein kinases). In addition, about 25% of the kinases identified did not have any known orthologues outside of Cryptosporidium spp. Comparison of specific kinases with their Plasmodium falciparum and Toxoplasma gondii orthologues revealed some distinct characteristics within the C. parvum kinome, including potential targets and opportunities for drug design. Structural and biochemical analysis of 4 representatives of the CaMK group and a MAP kinase confirms features that may be exploited in inhibitor design. Indeed, screening CpCDPK1 against a library of kinase inhibitors yielded a set of the pyrazolopyrimidine derivatives (PP1-derivatives) with IC50 values of < 10 nM. The binding of a PP1-derivative is further described by an inhibitor-bound crystal structure of CpCDPK1. In addition, structural analysis of CpCDPK4 identified an unprecedented Zn-finger within the CDPK kinase domain that may have implications for its regulation. CONCLUSIONS: Identification and comparison of the C. parvum protein kinases against other parasitic kinases shows how orthologue- and family-based research can be used to facilitate characterization of promising drug targets and the search for new drugs.


Asunto(s)
Cryptosporidium parvum/enzimología , Proteínas Quinasas/análisis , Proteínas Protozoarias/análisis , Cryptosporidium parvum/genética , Bases de Datos de Proteínas , Plasmodium falciparum/enzimología , Proteínas Quinasas/clasificación , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , Toxoplasma/enzimología
9.
Proteins ; 79 Suppl 10: 6-20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22020785

RESUMEN

One goal of the CASP community wide experiment on the critical assessment of techniques for protein structure prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, that is, the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this article, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fiber protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iß dimerization/docking domain, the ectodomain of the JTB (jumping translocation breakpoint) transmembrane receptor, Autotaxin in complex with an inhibitor, the DNA-binding J-binding protein 1 domain essential for biosynthesis and maintenance of DNA base-J (ß-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the phycobilisome core-membrane linker phycobiliprotein ApcE from Synechocystis, the heat shock protein 90 activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Proteínas/química , Secuencia de Aminoácidos , Animales , Bacteriófago T4/química , Proteínas Quinasas Dependientes de GMP Cíclico/química , Proteínas de Unión al ADN/química , Humanos , Klebsiella pneumoniae/química , Klebsiella pneumoniae/enzimología , Leishmania/química , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Plasmodium falciparum/química , Conformación Proteica , Pliegue de Proteína , Proteínas Protozoarias/química , Trypanosoma/química , Proteínas Virales/química
10.
PLoS One ; 6(8): e14827, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21853016

RESUMEN

UNLABELLED: The parasite Cryptosporidium parvum has three 14-3-3 proteins: Cp14ε, Cp14a and Cp14b, with only Cp14ε similar to human 14-3-3 proteins in sequence, peptide-binding properties and structure. Structurally, Cp14a features the classical 14-3-3 dimer but with a uniquely wide pocket and a disoriented RRY triad potentially incapable of binding phosphopeptides. The Cp14b protein deviates from the norm significantly: (i) In one subunit, the phosphorylated C-terminal tail is bound in the binding groove like a phosphopeptide. This supports our binding study indicating this protein was stabilized by a peptide mimicking its last six residues. (ii) The other subunit has eight helices instead of nine, with αA and αB forming a single helix and occluding the peptide-binding cleft. (iii) The protein forms a degenerate dimer with the two binding grooves divided and facing opposite directions. These features conspire to block and disrupt the bicameral substrate-binding pocket, suggesting a possible tripartite auto-regulation mechanism that has not been observed previously. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.


Asunto(s)
Proteínas 14-3-3/metabolismo , Cryptosporidium parvum/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas 14-3-3/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Protozoarias/química , Alineación de Secuencia
11.
Mol Biochem Parasitol ; 179(2): 69-79, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21689687

RESUMEN

Plasmodium falciparum malaria is the most important parasitic disease worldwide, responsible for an estimated 1 million deaths annually. Two P. falciparum genes code for putative phosphoglycerate mutases (PGMases), a widespread protein group characterized by the involvement of histidine residues in their catalytic mechanism. PGMases are responsible for the interconversion between 2 and 3-phosphoglycerate, an intermediate step in the glycolysis pathway. We have determined the crystal structures of one of the P. falciparum's PGMases (PfPGM2) and a functionally distinct phosphoglycerate mutase from Cryptosporidium parvum, a related apicomplexan parasite. We performed sequence and structural comparisons between the two structures, another P. falciparum enzyme (PfPGM1) and several other PGM family members from other organisms. The comparisons revealed a distinct conformation of the catalytically active residues not seen in previously determined phosphoglycerate mutase structures. Furthermore, characterization of their enzymatic activities revealed contrasting behaviors between the PfPGM2 and the classical cofactor-dependent PGMase from C. parvum, clearly establishing PfPGM2 as a phosphatase with a residual level of mutase activity. Further support for this function attribution was provided by our structural comparison with previously characterized PGM family members. Genetic characterization of PGM2 in the rodent parasite Plasmodium berghei indicated that the protein might be essential to blood stage asexual growth, and a GFP tagged allele is expressed in both blood and zygote ookinete development and located in the cytoplasm. The P. falciparum PGM2 is either an enzyme implicated in the phosphate metabolism of the parasite or a regulator of its life cycle.


Asunto(s)
Cryptosporidium parvum/enzimología , Fosfoglicerato Mutasa/química , Plasmodium berghei/enzimología , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Activación Enzimática , Pruebas de Enzimas , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Datos de Secuencia Molecular , Fosfoglicerato Mutasa/sangre , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Conformación Proteica , Proteínas Protozoarias/sangre , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
12.
Eukaryot Cell ; 10(7): 985-97, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21531872

RESUMEN

A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed.


Asunto(s)
Glucosamina 6-Fosfato N-Acetiltransferasa/química , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Cristalografía , Escherichia coli/genética , Técnicas de Inactivación de Genes , Glucosamina 6-Fosfato N-Acetiltransferasa/análisis , Glucosamina 6-Fosfato N-Acetiltransferasa/genética , Glucosamina 6-Fosfato N-Acetiltransferasa/metabolismo , Espectrometría de Masas , Microcuerpos/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Polisacáridos/análisis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
13.
Proteins ; 79(3): 803-20, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21287613

RESUMEN

We recently determined the first structures of inactivated and calcium-activated calcium-dependent protein kinases (CDPKs) from Apicomplexa. Calcium binding triggered a large conformational change that constituted a new mechanism in calcium signaling and a novel EF-hand fold (CAD, for CDPK activation domain). Thus we set out to determine if this mechanism was universal to all CDPKs. We solved additional CDPK structures, including one from the species Plasmodium. We highlight the similarities in sequence and structure across apicomplexan and plant CDPKs, and strengthen our observations that this novel mechanism could be universal to canonical CDPKs. Our new structures demonstrate more detailed steps in the mechanism of calcium activation and possible key players in regulation. Residues involved in making the largest conformational change are the most conserved across Apicomplexa, leading us to propose that the mechanism is indeed conserved. CpCDPK3_CAD and PfCDPK_CAD were captured at a possible intermediate conformation, lending insight into the order of activation steps. PfCDPK3_CAD adopts an activated fold, despite having an inactive EF-hand sequence in the N-terminal lobe. We propose that for most apicomplexan CDPKs, the mode of activation will be similar to that seen in our structures, while specific regulation of the inactive and active forms will require further investigation.


Asunto(s)
Proteínas Quinasas/química , Secuencia de Aminoácidos , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Quinasas/metabolismo , Homología de Secuencia de Aminoácido
14.
J Biol Chem ; 286(5): 3315-22, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21084289

RESUMEN

We present here a study of a eukaryotic trans-prenylsynthase from the malaria pathogen Plasmodium vivax. Based on the results of biochemical assays and contrary to previous indications, this enzyme catalyzes the production of geranylgeranyl pyrophosphate (GGPP) rather than farnesyl pyrophosphate (FPP). Structural analysis shows that the product length is constrained by a hydrophobic cavity formed primarily by a set of residues from the same subunit as the product as well as at least one other from the dimeric partner. Furthermore, Plasmodium GGPP synthase (GGPPS) can bind nitrogen-containing bisphosphonates (N-BPs) strongly with the energetically favorable cooperation of three Mg(2+), resulting in inhibition by this class of compounds at IC(50) concentrations below 100 nM. In contrast, human and yeast GGPPSs do not accommodate a third magnesium atom in the same manner, resulting in their insusceptibility to N-BPs. This differentiation is in part attributable to a deviation in a conserved motif known as the second aspartate-rich motif: whereas the aspartates at the start and end of the five-residue motif in FFPP synthases and P. vivax GGPPSs both participate in the coordination of the third Mg(2+), an asparagine is featured as the last residue in human and yeast GGPPSs, resulting in a different manner of interaction with nitrogen-containing ligands.


Asunto(s)
Geranilgeranil-Difosfato Geranilgeraniltransferasa/química , Plasmodium vivax/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Difosfonatos/metabolismo , Difosfonatos/farmacología , Inhibidores Enzimáticos , Geranilgeranil-Difosfato Geranilgeraniltransferasa/antagonistas & inhibidores , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Magnesio , Nitrógeno , Fosfatos de Poliisoprenilo/biosíntesis , Levaduras
15.
Glycobiology ; 20(12): 1619-30, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20724435

RESUMEN

The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite's survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for their growth. The only route to UDP-Gal in T. brucei is through the epimerization of UDP-glucose (UDP-Glc) by UDP-Glc 4'-epimerase. UDP-Glc is also the glucosyl donor for the unfolded glycoprotein glucosyltransferase (UGGT) involved in glycoprotein quality control in the endoplasmic reticulum and is the presumed donor for the synthesis of base J (ß-D-glucosylhydroxymethyluracil), a rare deoxynucleotide found in telomere-proximal DNA in the bloodstream form of T. brucei. Considering that UDP-Glc plays such a central role in carbohydrate metabolism, we decided to characterize UDP-Glc biosynthesis in T. brucei. We identified and characterized the parasite UDP-glucose pyrophosphorylase (TbUGP), responsible for the formation of UDP-Glc from glucose-1-phosphate and UTP, and localized the enzyme to the peroxisome-like glycosome organelles of the parasite. Recombinant TbUGP was shown to be enzymatically active and specific for glucose-1-phosphate. The high-resolution crystal structure was also solved, providing a framework for the design of potential inhibitors against the parasite enzyme.


Asunto(s)
Peroxisomas/enzimología , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/biosíntesis , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Animales , Cristalografía por Rayos X , Humanos , Peroxisomas/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética
16.
Nat Struct Mol Biol ; 17(5): 596-601, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20436473

RESUMEN

Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.


Asunto(s)
Calcio/metabolismo , Cryptosporidium parvum/enzimología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Toxoplasma/enzimología , Calcio/química , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Unión Proteica , Conformación Proteica
17.
J Struct Biol ; 158(1): 129-33, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17126031

RESUMEN

In order to study the packaging of rabies virus RNA inside the viral nucleocapsid, rabies nucleoprotein was expressed in insect cells. In the cells, it binds to cellular RNA to form long, helical or short circular complexes, depending on the length of the bound RNA. The circular complexes contained from 9 up to 13 N-protomers per ring. Separation of the rings into defined size classes was impossible through regular column chromatographies or gradient centrifugation. The size classes could be separated by native polyacrylamide gel electrophoresis. A large-scale separation was achieved with a 4% native gel using a preparative electrophoresis apparatus. Crystallization trials were set up with N-RNA rings from three size classes and crystals were obtained in all cases. The best diffracting crystals, diffracting up to 6A, contained rings with 11 N-protomers plus an RNA molecule of 99 nucleotides. The diffraction limit was improved to 3.5A by air dehydration prior to flash freezing.


Asunto(s)
Proteínas de la Nucleocápside/ultraestructura , Nucleoproteínas/ultraestructura , ARN Viral/ultraestructura , Virus de la Rabia/ultraestructura , Ensamble de Virus , Animales , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Nucleoproteínas/química , Nucleoproteínas/genética , ARN Viral/química , Virus de la Rabia/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestructura , Virus de la Estomatitis Vesicular Indiana/química , Virus de la Estomatitis Vesicular Indiana/ultraestructura
18.
Science ; 313(5785): 360-3, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16778023

RESUMEN

Negative-strand RNA viruses condense their genome into a helical nucleoprotein-RNA complex, the nucleocapsid, which is packed into virions and serves as a template for the RNA-dependent RNA polymerase complex. The crystal structure of a recombinant rabies virus nucleoprotein-RNA complex, organized in an undecameric ring, has been determined at 3.5 angstrom resolution. Polymerization of the nucleoprotein is achieved by domain exchange between protomers, with flexible hinges allowing nucleocapsid formation. The two core domains of the nucleoprotein clamp around the RNA at their interface and shield it from the environment. RNA sequestering by nucleoproteins is likely a common mechanism used by negative-strand RNA viruses to protect their genomes from the innate immune response directed against viral RNA in human host cells at certain stages of an infectious cycle.


Asunto(s)
Proteínas de la Nucleocápside/química , ARN Viral/química , Virus de la Rabia/química , Ribonucleoproteínas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/metabolismo , Genoma Viral , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Conformación Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , ARN Viral/genética , ARN Viral/metabolismo , Virus de la Rabia/genética , Proteínas Recombinantes/química
19.
BMC Struct Biol ; 4(1): 10, 2004 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-15579210

RESUMEN

BACKGROUND: Down-regulation of plasma membrane receptors via the endocytic pathway involves their monoubiquitylation, transport to endosomal membranes and eventual sorting into multi vesicular bodies (MVB) destined for lysosomal degradation. Successive assemblies of Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II and III) largely mediate sorting of plasma membrane receptors at endosomal membranes, the formation of multivesicular bodies and their release into the endosomal lumen. In addition, the human ESCRT-II has been shown to form a complex with RNA polymerase II elongation factor ELL in order to exert transcriptional control activity. RESULTS: Here we report the crystal structure of Vps25 at 3.1 A resolution. Vps25 crystallizes in a dimeric form and each monomer is composed of two winged helix domains arranged in tandem. Structural comparisons detect no conformational changes between unliganded Vps25 and Vps25 within the ESCRT-II complex composed of two Vps25 copies and one copy each of Vps22 and Vps36 12. CONCLUSIONS: Our structural analyses present a framework for studying Vps25 interactions with ESCRT-I and ESCRT-III partners. Winged helix domain containing proteins have been implicated in nucleic acid binding and it remains to be determined whether Vps25 has a similar activity which might play a role in the proposed transcriptional control exerted by Vps25 and/or the whole ESCRT-II complex.


Asunto(s)
Proteínas Portadoras/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/química , Ligandos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Proteínas de Transporte Vesicular
20.
J Biol Chem ; 279(13): 12269-76, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-14709553

RESUMEN

The Wilson disease protein (WND) is a transport ATPase involved in copper delivery to the secretory pathway. Mutations in WND and its homolog, the Menkes protein, lead to genetic disorders of copper metabolism. The WND and Menkes proteins are distinguished from other P-type ATPases by the presence of six soluble N-terminal metal-binding domains containing a conserved CXXC metal-binding motif. The exact roles of these domains are not well established, but possible functions include exchanging copper with the metallochaperone Atox1 and mediating copper-responsive cellular relocalization. Although all six domains can bind copper, genetic and biochemical studies indicate that the domains are not functionally equivalent. One way the domains could be tuned to perform different functions is by having different affinities for Cu(I). We have used isothermal titration calorimetry to measure the association constant (K(a)) and stoichiometry (n) values of Cu(I) binding to the WND metal-binding domains and to their metallochaperone Atox1. The association constants for both the chaperone and target domains are approximately 10(5) to 10(6) m(-1), suggesting that the handling of copper by Atox1 and copper transfer between Atox1 and WND are under kinetic rather than thermodynamic control. Although some differences in both n and K(a) values are observed for variant proteins containing less than the full complement of six metal-binding domains, the data for domains 1-6 were best fitted with a single site model. Thus, the individual functions of the six WND metal-binding domains are not conferred by different Cu(I) affinities but instead by fold and electrostatic surface properties.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Transporte de Catión/química , Cobre/química , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Proteínas de Arabidopsis/química , Sitios de Unión , Fenómenos Bioquímicos , Bioquímica , Calorimetría , Proteínas de Transporte de Catión/metabolismo , Clonación Molecular , Proteínas Transportadoras de Cobre , ATPasas Transportadoras de Cobre , Cartilla de ADN/química , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Metalochaperonas , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Muramidasa/química , Mutación , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Termodinámica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA