Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(1): e0357923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38059623

RESUMEN

IMPORTANCE: Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Niño , Humanos , Streptococcus pneumoniae/genética , Infecciones Neumocócicas/microbiología , Serogrupo , Vacunas Neumococicas , Asia
2.
Front Cell Infect Microbiol ; 13: 1279119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094742

RESUMEN

Background: The polysaccharide capsule of Streptococcus pneumoniae plays a major role in virulence, adherence to epithelial cells, and overall survival of the bacterium in the human host. Galactose, mannose, and N-acetylglucosamine (GlcNAc) are likely to be relevant for metabolization in the nasopharynx, while glucose is the primary carbon source in the blood. In this study, we aim to further the understanding of the influence of carbon sources on pneumococcal growth, capsule biosynthesis, and subsequent adherence potential. Methods: We tested the growth behavior of clinical wild-type and capsule knockout S. pneumoniae strains, using galactose, GlcNAc, mannose, and glucose as carbon source for growth. We measured capsule thickness and quantified capsule precursors by fluorescein isothiocyanate (FITC)-dextran exclusion assays and 31P-nuclear magnetic resonance measurements, respectively. We also performed epithelial adherence assays using Detroit 562 cells and performed a transcriptome analysis (RNA sequencing). Results: We observed a reduced growth in galactose, mannose, and GlcNAc compared to growth in glucose and found capsular size reductions in mannose and GlcNAc compared to galactose and glucose. Additionally, capsular precursor measurements of uridine diphosphate-(UDP)-glucose and UDP-galactose showed less accumulation of precursors in GlcNAc or mannose than in glucose and galactose, indicating a possible link with the received capsular thickness measurements. Epithelial adherence assays showed an increase in adherence potential for a pneumococcal strain, when grown in mannose compared to glucose. Finally, transcriptome analysis of four clinical isolates revealed not only strain specific but also common carbon source-specific gene expression. Conclusion: Our findings may indicate a careful adaption of the lifestyle of S. pneumoniae according to the monosaccharides encountered in the respective human niche.


Asunto(s)
Galactosa , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/metabolismo , Carbono/metabolismo , Manosa , Glucosa/metabolismo , Uridina Difosfato/metabolismo , Cápsulas Bacterianas/genética
3.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925509

RESUMEN

The structure of the exopolysaccharide capsule of Streptococcus pneumoniae is defined by the genetic arrangement of the capsule operon allowing the unequivocal identification of the pneumococcal serotype. Here, we investigated the environment-dependent composition of the polysaccharide structure of S. pneumoniae serotype 6F. When grown in a chemically defined medium (CDM) with glucose versus galactose, the exopolysaccharide capsule of the serotype 6F strains reveals a ratio of 1/0.6 or 1/0.3 for galactose/glucose in the capsule by 1H-NMR analyses, respectively. Increased production of the capsule precursor UDP-glucose has been identified by 31P-NMR in CDM with glucose. Flow cytometric experiments using monoclonal antibodies showed decreased labelling of Hyp6AG4 (specific for serotype 6A) antibodies when 6F is grown in glucose as compared to galactose, which mirrors the 1H-NMR results. Whole-genome sequencing analyses of serotype 6F isolates suggested that the isolates evolved during two different events from serotype 6A during the time when the 13-valent pneumococcal conjugate vaccine (PCV-13) was introduced. In conclusion, this study shows differences in the capsular structure of serotype 6F strains using glucose as compared to galactose as the carbon source. Therefore, 6F strains may show slightly different polysaccharide composition while colonizing the human nasopharynx (galactose rich) as compared to invasive locations such as the blood (glucose rich).


Asunto(s)
Carbono/metabolismo , Polisacáridos Bacterianos/química , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Anticuerpos Monoclonales/metabolismo , Evolución Biológica , Citometría de Flujo , Galactosa/metabolismo , Genoma Bacteriano , Glucosa/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Nasofaringe/microbiología , Fósforo , Filogenia , Infecciones Neumocócicas/microbiología , Serogrupo , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/aislamiento & purificación
5.
Nat Commun ; 11(1): 1978, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332737

RESUMEN

There is the notion that infection with a virulent intestinal pathogen induces generally stronger mucosal adaptive immunity than the exposure to an avirulent strain. Whether the associated mucosal inflammation is important or redundant for effective induction of immunity is, however, still unclear. Here we use a model of auxotrophic Salmonella infection in germ-free mice to show that live bacterial virulence factor-driven immunogenicity can be uncoupled from inflammatory pathogenicity. Although live auxotrophic Salmonella no longer causes inflammation, its mucosal virulence factors remain the main drivers of protective mucosal immunity; virulence factor-deficient, like killed, bacteria show reduced efficacy. Assessing the involvement of innate pathogen sensing mechanisms, we show MYD88/TRIF, Caspase-1/Caspase-11 inflammasome, and NOD1/NOD2 nodosome signaling to be individually redundant. In colonized animals we show that microbiota metabolite cross-feeding may recover intestinal luminal colonization but not pathogenicity. Consequent immunoglobulin A immunity and microbial niche competition synergistically protect against Salmonella wild-type infection.


Asunto(s)
Inmunidad Mucosa , Mucosa Intestinal/microbiología , Infecciones por Salmonella/microbiología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Antígenos Bacterianos , Caspasa 1/metabolismo , Caspasas Iniciadoras/metabolismo , Proliferación Celular , Microbioma Gastrointestinal , Inmunidad Innata , Inmunoglobulina A/inmunología , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Salmonella typhimurium/patogenicidad , Transducción de Señal , Virulencia , Factores de Virulencia
6.
J Biol Chem ; 294(46): 17224-17238, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31594867

RESUMEN

The exopolysaccharide capsule of Streptococcus pneumoniae is an important virulence factor, but the mechanisms that regulate capsule thickness are not fully understood. Here, we investigated the effects of various exogenously supplied carbohydrates on capsule production and gene expression in several pneumococcal serotypes. Microscopy analyses indicated a near absence of the capsular polysaccharide (CPS) when S. pneumoniae was grown on fructose. Moreover, serotype 7F pneumococci produced much less CPS than strains of other serotypes (6B, 6C, 9V, 15, and 23F) when grown on glucose or sucrose. RNA-sequencing revealed carbon source-dependent regulation of distinct genes of WT strains and capsule-switch mutants of serotypes 6B and 7F, but could not explain the mechanism of capsule thickness regulation. In contrast, 31P NMR of whole-cell extract from capsule-knockout strains (Δcps) clearly revealed the accumulation or absence of capsule precursor metabolites when cells were grown on glucose or fructose, respectively. This finding suggests that fructose uptake mainly results in intracellular fructose 1-phosphate, which is not converted to CPS precursors. In addition, serotype 7F strains accumulated more precursors than did 6B strains, indicating less efficient conversion of precursor metabolites into the CPS in 7F, in line with its thinner capsule. Finally, isotopologue sucrose labeling and NMR analyses revealed that the uptake of the labeled fructose subunit into the capsule is <10% that of glucose. Our findings on the effects of carbon sources on CPS production in different S. pneumoniae serotypes may contribute to a better understanding of pneumococcal diseases and could inform future therapeutic approaches.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Carbono/metabolismo , Polisacáridos Bacterianos/metabolismo , Streptococcus pneumoniae/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/ultraestructura , Fructosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Humanos , Infecciones Neumocócicas/microbiología , Polisacáridos Bacterianos/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/ultraestructura , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...