Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 19(24): 9118-9135, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38051202

RESUMEN

In this paper, we propose an improved excitation generation algorithm for the full configuration interaction quantum Monte Carlo method, which is particularly effective in systems described by localized orbitals. The method is an extension of the precomputed heat-bath strategy of Holmes et al., with more effective sampling of double excitations and a novel approach for nonuniform sampling of single excitations. We demonstrate the effectiveness of the algorithm for a chain of 30 hydrogen atoms with atom-localized orbitals, a stack of benzene molecules, and an Fe(II)-porphyrin model complex, whereby we show an overall efficiency gain by a factor of two to four, as measured by variance reduction per wall-clock time.

2.
J Comput Chem ; 44(5): 710-726, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36541725

RESUMEN

In this work, we present a fully automated method for the construction of chemically meaningful sets of hierarchical nonredundant internal coordinates (ICs; also commonly denoted as Z-matrices) from the Cartesian coordinates of a molecular system. Particular focus is placed on avoiding ill-definitions of angles and dihedrals due to linear arrangements of atoms, to consistently guarantee a well-defined transformation to Cartesian coordinates, even after structural changes. The representations thus obtained are particularly well suited for pathway construction in double-ended methods for transition state search and optimizations with nonlinear constraints. Analytical gradients for the transformation between the coordinate systems were derived for analytical geometry optimizations purely in Z-matrix coordinates. The geometry optimization was coupled with a Symbolic Algebra package to support arbitrary nonlinear constraints in Z-matrix coordinates, while retaining analytical energy gradient conversion. The difference to the commonly used nonhierarchical IC transformations is discussed. Sample applications are provided for a number of common chemical reactions and illustrative examples.


Asunto(s)
Matemática
3.
J Phys Chem A ; 126(12): 2050-2060, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35298155

RESUMEN

In this article, we demonstrate that a first-order spin penalty scheme can be efficiently applied to the Slater determinant based Full-CI Quantum Monte Carlo (FCIQMC) algorithm, as a practical route toward spin purification. Two crucial applications are presented to demonstrate the validity and robustness of this scheme: the 1Δg ← 3Σg vertical excitation in O2 and key spin gaps in a [Mn3(IV)O4] cluster. In the absence of a robust spin adaptation/purification technique, both applications would be unattainable by Slater determinant based ground state methods, with any starting wave function collapsing into the higher-spin ground state during the optimization. This strategy can be coupled to other algorithms that use the Slater determinant based FCIQMC algorithm as configuration interaction eigensolver, including the Stochastic Generalized Active Space, the similarity-transformed FCIQMC, the tailored-CC, and second-order perturbation theory approaches. Moreover, in contrast to the GUGA-FCIQMC technique, this strategy features both spin projection and total spin adaptation, making it appealing when solving anisotropic Hamiltonians. It also provides spin-resolved reduced density matrices, important for the investigation of spin-dependent properties in polynuclear transition metal clusters, such as the hyperfine-coupling constants.

4.
J Chem Theory Comput ; 18(1): 251-272, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34898215

RESUMEN

An algorithm to perform stochastic generalized active space calculations, Stochastic-GAS, is presented, that uses the Slater determinant based FCIQMC algorithm as configuration interaction eigensolver. Stochastic-GAS allows the construction and stochastic optimization of preselected truncated configuration interaction wave functions, either to reduce the computational costs of large active space wave function optimizations, or to probe the role of specific electron correlation pathways. As for the conventional GAS procedure, the preselection of the truncated wave function is based on the selection of multiple active subspaces while imposing restrictions on the interspace excitations. Both local and cumulative minimum and maximum occupation number constraints are supported by Stochastic-GAS. The occupation number constraints are efficiently encoded in precomputed probability distributions, using the precomputed heat bath algorithm, which removes nearly all runtime overhead of GAS. This strategy effectively allows the FCIQMC dynamics to a priori exclude electronic configurations that are not allowed by GAS restrictions. Stochastic-GAS reduced density matrices are stochastically sampled, allowing orbital relaxations via Stochastic-GASSCF, and direct evaluation of properties that can be extracted from density matrices, such as the spin expectation value. Three test case applications have been chosen to demonstrate the flexibility of Stochastic-GAS: (a) the Stochastic-GASSCF [5·(6, 6)] optimization of a stack of five benzene molecules, that shows the applicability of Stochastic-GAS toward fragment-based chemical systems; (b) an uncontracted stochastic MRCISD calculation that correlates 96 electrons and 159 molecular orbitals, and uses a large (32, 34) active space reference wave function for an Fe(II)-porphyrin model system, showing how GAS can be applied to systematically recover dynamic electron correlation, and how in the specific case of the Fe(II)-porphyrin dynamic correlation further differentially stabilizes the 3Eg over the 5A1g spin state; (c) the study of an Fe4S4 cluster's spin-ladder energetics via highly truncated stochastic-GAS [4·(5, 5)] wave functions, where we show how GAS can be applied to understand the competing spin-exchange and charge-transfer correlating mechanisms in stabilizing different spin-states.

5.
J Chem Theory Comput ; 17(9): 5684-5703, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34469685

RESUMEN

In this work, we demonstrate how to efficiently compute the one- and two-body reduced density matrices within the spin-adapted full configuration interaction quantum Monte Carlo (FCIQMC) method, which is based on the graphical unitary group approach (GUGA). This allows us to use GUGA-FCIQMC as a spin-pure configuration interaction (CI) eigensolver within the complete active space self-consistent field (CASSCF) procedure and hence to stochastically treat active spaces far larger than conventional CI solvers while variationally relaxing orbitals for specific spin-pure states. We apply the method to investigate the spin ladder in iron-sulfur dimer and tetramer model systems. We demonstrate the importance of the orbital relaxation by comparing the Heisenberg model magnetic coupling parameters from the CASSCF procedure to those from a CI-only (CASCI) procedure based on restricted open-shell Hartree-Fock orbitals. We show that the orbital relaxation differentially stabilizes the lower-spin states, thus enlarging the coupling parameters with respect to the values predicted by ignoring orbital relaxation effects. Moreover, we find that, while CASCI results are well fit by a simple bilinear Heisenberg Hamiltonian, the CASSCF eigenvalues exhibit deviations that necessitate the inclusion of biquadratic terms in the model Hamiltonian.

6.
Chemistry ; 27(61): 15158-15170, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34431572

RESUMEN

Three new zinc(II) coordination units [Zn(1-3)] based on planar-directing tetradentate Schiff base-like ligands H2 (1-3) were synthesized. Their solid-state structures were investigated by single crystal X-ray diffraction, showing the tendency to overcome the square-planar coordination sphere by axial ligation. Affinity in solution towards axial ligation has been tested by extended spectroscopic studies, both in the absorption and emission mode. The electronic spectrum of the pyridine complex [Zn(1)(py)] has been characterized by MC-PDFT to validate the results of extended TD-DFT studies. Green emission of non-emissive solutions of [Zn(1-3)] in chloroform could be switched on in the presence of potent Lewis-bases. While interpretation in terms of an equilibrium of stacked/non-fluorescent and destacked/fluorescent species is in line with precedents from literature, the sensitivity of [Zn(1-3)] was greatly reduced. Results of a computation-based structure search allow to trace the hidden Lewis acidity of [Zn(1-3)] to a new stacking motif, resulting in a strongly enhanced stability of the dimers.


Asunto(s)
Complejos de Coordinación , Zinc , Cristalografía por Rayos X , Ácidos de Lewis , Ligandos , Bases de Schiff
7.
J Chem Phys ; 153(3): 034107, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32716189

RESUMEN

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green's functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.

8.
Front Chem ; 5: 111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29259969

RESUMEN

Multiconfigurational methods are applied to study electronic properties and structural changes in the highly flexible metal-organic framework MIL53(Cr). Via calculated bending potentials of angles, that change the most during phase transition, it is verified that the high flexibility of this material is not a question about special electronic properties in the coordination chemistry, but about overall linking of the framework. The complex posseses a demanding electronic structure with delocalized spin density, antifferomagnetic coupling and high multi-state character requiring multiconfigurational methods. Calculated properties are in good agreement with known experimental values confirming our chosen methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...