Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Hyg Environ Health ; 259: 114382, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652943

RESUMEN

Air pollution is a known risk factor for several diseases, but the extent to which it influences COVID-19 compared to other respiratory diseases remains unclear. We performed a test-negative case-control study among people with COVID-19-compatible symptoms who were tested for SARS-CoV-2 infection, to assess whether their long- and short-term exposure to ambient air pollution (AAP) was associated with testing positive (vs. negative) for SARS-CoV-2. We used individual-level data for all adult residents in the Netherlands who were tested for SARS-CoV-2 between June and November 2020, when only symptomatic people were tested, and modeled ambient concentrations of PM10, PM2.5, NO2 and O3 at geocoded residential addresses. In long-term exposure analysis, we selected individuals who did not change residential address in 2017-2019 (1.7 million tests) and considered the average concentrations of PM10, PM2.5 and NO2 in that period, and different sources of PM (industry, livestock, other agricultural activities, road traffic, other Dutch sources, foreign sources). In short-term exposure analysis, individuals not changing residential address in the two weeks before testing day (2.7 million tests) were included in the analyses, thus considering 1- and 2-week average concentrations of PM10, PM2.5, NO2 and O3 before testing day as exposure. Mixed-effects logistic regression analysis with adjustment for several confounders, including municipality and testing week to account for spatiotemporal variation in viral circulation, was used. Overall, there was no statistically significant effect of long-term exposure to the studied pollutants on the odds of testing positive vs. negative for SARS-CoV-2. However, significant positive associations of long-term exposure to PM10 and PM2.5 from specifically foreign and livestock sources, and to PM10 from other agricultural sources, were observed. Short-term exposure to PM10 (adjusting for NO2) and PM2.5 were also positively associated with increased odds of testing positive for SARS-CoV-2. While these exposures seemed to increase COVID-19 risk relative to other respiratory diseases, the underlying biological mechanisms remain unclear. This study reinforces the need to continue to strive for better air quality to support public health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Material Particulado , SARS-CoV-2 , Humanos , Países Bajos/epidemiología , COVID-19/epidemiología , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Estudios de Casos y Controles , Masculino , Persona de Mediana Edad , Contaminantes Atmosféricos/análisis , Femenino , Adulto , Factores de Riesgo , Material Particulado/análisis , Anciano , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/efectos adversos
2.
Environ Int ; 175: 107960, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37178608

RESUMEN

BACKGROUND: Health implications of long-term exposure to ubiquitously present ultrafine particles (UFP) are uncertain. The aim of this study was to investigate the associations between long-term UFP exposure and natural and cause-specific mortality (including cardiovascular disease (CVD), respiratory disease, and lung cancer) in the Netherlands. METHODS: A Dutch national cohort of 10.8 million adults aged ≥ 30 years was followed from 2013 until 2019. Annual average UFP concentrations were estimated at the home address at baseline, using land-use regression models based on a nationwide mobile monitoring campaign performed at the midpoint of the follow-up period. Cox proportional hazard models were applied, adjusting for individual and area-level socio-economic status covariates. Two-pollutant models with the major regulated pollutants nitrogen dioxide (NO2) and fine particles (PM2.5 and PM10), and the health relevant combustion aerosol pollutant (elemental carbon (EC)) were assessed based on dispersion modelling. RESULTS: A total of 945,615 natural deaths occurred during 71,008,209 person-years of follow-up. The correlation of UFP concentration with other pollutants ranged from moderate (0.59 (PM2.5)) to high (0.81 (NO2)). We found a significant association between annual average UFP exposure and natural mortality [HR 1.012 (95 % CI 1.010-1.015), per interquartile range (IQR) (2723 particles/cm3) increment]. Associations were stronger for respiratory disease mortality [HR 1.022 (1.013-1.032)] and lung cancer mortality [HR 1.038 (1.028-1.048)] and weaker for CVD mortality [HR 1.005 (1.000-1.011)]. The associations of UFP with natural and lung cancer mortality attenuated but remained significant in all two-pollutant models, whereas the associations with CVD and respiratory mortality attenuated to the null. CONCLUSION: Long-term UFP exposure was associated with natural and lung cancer mortality among adults independently from other regulated air pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Neoplasias Pulmonares , Enfermedades Respiratorias , Adulto , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Causas de Muerte , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis
3.
Med Oncol ; 40(4): 112, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36881207

RESUMEN

While healthcare is becoming more patient-centred, evidence-based nutrition interventions are still not accessible to all patients with cancer. As nutrition interventions directly improve clinical and socioeconomic outcomes, patient-centred care is not complete without nutrition care. While awareness of the negative impact of malnutrition on clinical outcomes, quality of life, and functional and emotional wellbeing in cancer is growing, there is relatively poor awareness amongst patients, clinicians, policymakers, and payers that nutrition interventions -particularly those begun in the early stages of the disease course- are an effective method for improving such outcomes. The European Beating Cancer Plan recognises the need for a holistic approach to cancer but lacks actionable recommendations to implement integrated nutrition cancer care at member state level. When considering nutrition care as a human right, the impact on quality of life and functional status must be prioritized, as these may be equally as important to patients, especially in advanced cancer where improvements in clinical outcomes such as survival or tumour burden may not be attainable. We formulate actions needed at the regional and the European level to ensure integrated nutrition care for all patients with cancer. The 4 main Take Home Messages are as follows: 1. The goals of Europe's Beating Cancer Plan cannot be achieved without integrating nutrition across the cancer care continuum. 2. Malnutrition negatively impacts clinical outcomes and has socioeconomic consequences for patients and healthcare systems. 3. Championing integrating nutrition care into cancer care is therefore the duty and ethical responsibility of clinicians (Hippocratic Oath-primum non nocere) and 4. Nutrition care is a cost effective, evidence-based therapy.


Asunto(s)
Desnutrición , Calidad de Vida , Humanos , Consenso , Continuidad de la Atención al Paciente , Progresión de la Enfermedad , Desnutrición/terapia
4.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298407

RESUMEN

In rural areas, livestock farming is a source of environmental concern. We describe a citizen science (CS) project in Venray, the Netherlands, where air quality was measured at livestock farms and surrounding residential premises. We used low-cost methods to measure air quality components and facilitated a dialogue between stakeholders about the results and solutions for cleaner air. PM2.5 and PM10 were measured using Nova Fitness SDS011 sensors, nitrogen dioxide (NO2) and ammonia (NH3) using Palmes tubes and odour annoyance was reported. Particulate Matter (PM) concentrations were higher close to layer farms, but elevated concentrations were limited at other farms and residential locations. NO2 concentrations were elevated near busy roads, and higher NH3 values were measured near livestock farms. Reporting of odour annoyance was limited, yet during the dialogue residents indicated that this was their largest concern. While both farmers and residents agreed with the general conclusions, they still preferred opposing measures. We conclude that characterisation of air quality using low-cost methods is possible, but expert guidance is needed. Moreover, education, commitment of participants and involvement of independent parties are crucial to ensuring a productive dialogue between stakeholders. The insights gained by participants and resulting dialogue were the greatest benefits of this CS approach.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciencia Ciudadana , Animales , Humanos , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Países Bajos , Agricultores , Contaminación del Aire/análisis , Material Particulado/análisis , Ganado , Monitoreo del Ambiente/métodos , Exposición a Riesgos Ambientales
5.
Sensors (Basel) ; 21(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34883922

RESUMEN

Low-cost sensor technology has been available for several years and has the potential to complement official monitoring networks. The current generation of nitrogen dioxide (NO2) sensors suffers from various technical problems. This study explores the added value of calibration models based on (multiple) linear regression including cross terms on the performance of an electrochemical NO2 sensor, the B43F manufactured by Alphasense. Sensor data were collected in duplicate at four reference sites in the Netherlands over a period of one year. It is shown that a calibration, using O3 and temperature in addition to a reference NO2 measurement, improves the prediction in terms of R2 from less than 0.5 to 0.69-0.84. The uncertainty of the calibrated sensors meets the Data Quality Objective for indicative methods specified by the EU directive in some cases and it was verified that the sensor signal itself remains an important predictor in the multilinear regressions. In practice, these sensors are likely to be calibrated over a period (much) shorter than one year. This study shows the dependence of the quality of the calibrated signal on the choice of these short (monthly) calibration and validation periods. This information will be valuable for determining short-period calibration strategies.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/análisis , Calibración , Monitoreo del Ambiente , Dióxido de Nitrógeno/análisis , Ozono/análisis , Estaciones del Año
6.
Artículo en Inglés | MEDLINE | ID: mdl-34205027

RESUMEN

Air pollution, especially fine particulate matter (PM2.5), is a major environmental risk factor for human health in Europe. Monitoring of air quality takes place using expensive reference stations. Low-cost sensors are a promising addition to this official monitoring network as they add spatial and temporal resolution at low cost. Moreover, low-cost sensors might allow for better characterization of personal exposure to PM2.5. In this study, we use 500 dust (PM2.5) sensors mounted on bicycles to estimate typical PM2.5 levels to which cyclists are exposed in the province of Utrecht, the Netherlands, in the year 2020. We use co-located sensors at reference stations to calibrate and validate the mobile sensor data. We estimate that the average exposure to traffic related PM2.5, on top of background concentrations, is approximately 2 µg/m3. Our results suggest that cyclists close to major roads have a small, but consistently higher exposure to PM2.5 compared to routes with less traffic. The results allow for a detailed spatial representation of PM2.5 concentrations and show that choosing a different cycle route might lead to a lower exposure to PM2.5. Finally, we conclude that the use of mobile, low-cost sensors is a promising method to estimate exposure to air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Europa (Continente) , Humanos , Países Bajos , Material Particulado/análisis
7.
Environ Int ; 146: 106306, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33395948

RESUMEN

INTRODUCTION: To characterize air pollution exposure at a fine spatial scale, different exposure assessment methods have been applied. Comparison of associations with health from different exposure methods are scarce. The aim of this study was to evaluate associations of air pollution based on hybrid, land-use regression (LUR) and dispersion models with natural cause and cause-specific mortality. METHODS: We followed a Dutch national cohort of approximately 10.5 million adults aged 29+ years from 2008 until 2012. We used Cox proportional hazard models with age as underlying time scale and adjusted for several potential individual and area-level socio-economic status confounders to evaluate associations of annual average residential NO2, PM2.5 and BC exposure estimates based on two stochastic models (Dutch LUR, European-wide hybrid) and deterministic Dutch dispersion models. RESULTS: Spatial variability of PM2.5 and BC exposure was smaller for LUR compared to hybrid and dispersion models. NO2 exposure variability was similar for the three methods. Pearson correlations between hybrid, LUR and dispersion modeled NO2 and BC ranged from 0.72 to 0.83; correlations for PM2.5 were slightly lower (0.61-0.72). In general, all three models showed stronger associations of air pollutants with respiratory disease and lung cancer mortality than with natural cause and cardiovascular disease mortality. The strength of the associations differed between the three exposure models. Associations of air pollutants estimated by LUR were generally weaker compared to associations of air pollutants estimated by hybrid and dispersion models. For natural cause mortality, we found a hazard ratio (HR) of 1.030 (95% confidence interval (CI): 1.019, 1.041) per 10 µg/m3 for hybrid modeled NO2, a HR of 1.003 (95% CI: 0.993, 1.013) per 10 µg/m3 for LUR modeled NO2 and a HR of 1.015 (95% CI: 1.005, 1.024) per 10 µg/m3 for dispersion modeled NO2. CONCLUSION: Air pollution was positively associated with natural cause and cause-specific mortality, but the strength of the associations differed between the three exposure models. Our study documents that the selected exposure model may contribute to heterogeneity in effect estimates of associations between air pollution and health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Respiratorias , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , Material Particulado/efectos adversos , Material Particulado/análisis
8.
Atmos Environ (1994) ; 247: 118158, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36569605

RESUMEN

The lockdown measures in response to the SARS-CoV-2 virus outbreak in 2020 have resulted in reductions in emissions of air pollutants and corresponding ambient concentrations. In the Netherlands, the most stringent lockdown measures were in effect from March to May 2020. These measures coincided with a period of unusual meteorological conditions with wind from the north-east and clear-sky conditions, which complicates the quantification of the effect of the lockdown measures on the air quality. Here we quantify the lockdown effects on the concentrations of nitrogen oxides (NOx and NO2), particulate matter (PM10 and PM2.5) and ozone (O3) in the Netherlands, by analyzing observations and simulations with the atmospheric chemistry-transport model EMEP/MSC-W in its EMEP4NL configuration, after eliminating the effects of meteorological conditions during the lockdown. Based on statistical analyses with a Random Forest method, we estimate that the lockdown reduced observed NO2 concentrations by 30% (95% confidence interval 25-35%), 26% (21-32%), and 18% (10-25%) for traffic, urban, and rural background locations, respectively. Slightly smaller reductions of 8-28% are found with the EMEP4NL simulations for urban and regional background locations based on estimates in reductions in economic activity and emissions of traffic and industry in the Netherlands and other European countries. Reductions in observed PM2.5 concentrations of about 20% (10-25%) are found for all locations, which is somewhat larger than the estimates of 5-16% based on the model simulations. A comparison of the calculated NO2 traffic contributions with observations shows a substantial drop of about 35% in traffic contributions during the lockdown period, which is similar to the estimated reductions in mobility data as reported by Apple and Google. Since the largest health effects related to air pollution in the Netherlands are associated with exposure to PM10 and PM2.5, the lockdown measures in spring of 2020 have temporarily improved the air quality in the Netherlands. The concentrations of the most health relevant compounds have only been reduced by about 10-25%.

9.
Sci Total Environ ; 705: 135778, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31972935

RESUMEN

BACKGROUND: Long-term exposure to particulate air pollution has been associated with mortality in urban cohort studies. Few studies have investigated the association between emission contributions from different particle sources and mortality in large-scale population registries, including non-urban populations. OBJECTIVES: The aim of the study was to evaluate the associations between long-term exposure to particulate air pollution from different source categories and non-accidental mortality in the Netherlands based on existing national databases. METHODS: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighbourhood characteristics and modelled air pollution concentrations from different sources and air pollution components: particulate matter PM10, primary particulate matter PM10 (PPM10), particulate matter PM2.5, primary particulate matter PM2.5 (PPM2.5), elemental carbon (EC), nitrogen dioxide (NO2) and secondary inorganic aerosol (SIA) in PM10 (SIA10) or in PM2.5 (SIA2.5). We established a cohort of 7.5 million individuals 30 years or older. We followed the cohort for eight years (2008-2015). We applied Cox proportional hazard regression models adjusting for potential individual and area-specific confounders. RESULTS: We found statistically significant associations between total and primary particulate matter (PM10 and PM2.5), elemental carbon and mortality. Adjustment for nitrogen dioxide did not change the associations. Secondary inorganic aerosol showed less consistent associations. All primary PM sources were associated with mortality, except agricultural emissions and, depending on the statistical model, industrial PM emissions. CONCLUSIONS: We could not identify one or more specific source categories of particulate air pollution as main determinants of the mortality effects found in this and in a previous study. This suggests that present policy measures should be focussed on the wider spectrum of air pollution sources instead of on specific sources.


Asunto(s)
Contaminación del Aire , Adulto , Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Humanos , Estudios Longitudinales , Países Bajos , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...